Minghong Huang , Changsheng Cao , Li Liu , Wenbo Wei , Qi-Long Zhu , Zhenguo Huang
{"title":"控制合成MOF衍生的中空和黄壳纳米笼,用于改善水氧化和选择性乙二醇重整","authors":"Minghong Huang , Changsheng Cao , Li Liu , Wenbo Wei , Qi-Long Zhu , Zhenguo Huang","doi":"10.1016/j.esci.2023.100118","DOIUrl":null,"url":null,"abstract":"<div><p>Delicately designed metal–organic framework (MOF)-derived nanostructured electrocatalysts are essential for improving the reaction kinetics of the oxygen evolution reaction and tuning the selectivity of small organic molecule oxidation reactions. Herein, novel oxalate-modified hollow CoFe-based layered double hydroxide nanocages (h-CoFe-LDH NCs) and yolk–shell ZIF@CoFe-LDH nanocages (ys-ZIF@CoFe-LDH NCs) are developed through an etching–doping reconstruction strategy from a Co-based MOF precursor (ZIF-67). The distinctive nanostructures, along with the incorporation of the secondary metal element and intercalated oxalate groups, enable h-CoFe-LDH NCs and ys-ZIF@CoFe-LDH NCs to expose more active sites with high intrinsic activity. The resultant h-CoFe-LDH NCs exhibit outstanding OER activity with an overpotential of only 278 mV to deliver a current density of 50 mA cm<sup>−2</sup>. Additionally, controlling the reconstruction degree enables the formation of ys-ZIF@CoFe-LDH NCs with a yolk–shell nanocage nanostructure, which show outstanding electrocatalytic performance for the selective ethylene glycol oxidation reaction (EGOR) toward formate, with a Faradaic efficiency of up to 91%. Consequently, a hybrid water electrolysis system integrating the EGOR and the hydrogen evolution reaction using Pt/C||ys-ZIF@CoFe-LDH NCs is explored for energy-saving hydrogen production, requiring a cell voltage 127 mV lower than water electrolysis to achieve a current density of 50 mA cm<sup>−2</sup>. This work demonstrates a feasible way to design advanced MOF-derived electrocatalysts toward enhanced electrocatalytic reactions.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"3 5","pages":"Article 100118"},"PeriodicalIF":42.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Controlled synthesis of MOF-derived hollow and yolk–shell nanocages for improved water oxidation and selective ethylene glycol reformation\",\"authors\":\"Minghong Huang , Changsheng Cao , Li Liu , Wenbo Wei , Qi-Long Zhu , Zhenguo Huang\",\"doi\":\"10.1016/j.esci.2023.100118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Delicately designed metal–organic framework (MOF)-derived nanostructured electrocatalysts are essential for improving the reaction kinetics of the oxygen evolution reaction and tuning the selectivity of small organic molecule oxidation reactions. Herein, novel oxalate-modified hollow CoFe-based layered double hydroxide nanocages (h-CoFe-LDH NCs) and yolk–shell ZIF@CoFe-LDH nanocages (ys-ZIF@CoFe-LDH NCs) are developed through an etching–doping reconstruction strategy from a Co-based MOF precursor (ZIF-67). The distinctive nanostructures, along with the incorporation of the secondary metal element and intercalated oxalate groups, enable h-CoFe-LDH NCs and ys-ZIF@CoFe-LDH NCs to expose more active sites with high intrinsic activity. The resultant h-CoFe-LDH NCs exhibit outstanding OER activity with an overpotential of only 278 mV to deliver a current density of 50 mA cm<sup>−2</sup>. Additionally, controlling the reconstruction degree enables the formation of ys-ZIF@CoFe-LDH NCs with a yolk–shell nanocage nanostructure, which show outstanding electrocatalytic performance for the selective ethylene glycol oxidation reaction (EGOR) toward formate, with a Faradaic efficiency of up to 91%. Consequently, a hybrid water electrolysis system integrating the EGOR and the hydrogen evolution reaction using Pt/C||ys-ZIF@CoFe-LDH NCs is explored for energy-saving hydrogen production, requiring a cell voltage 127 mV lower than water electrolysis to achieve a current density of 50 mA cm<sup>−2</sup>. This work demonstrates a feasible way to design advanced MOF-derived electrocatalysts toward enhanced electrocatalytic reactions.</p></div>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"3 5\",\"pages\":\"Article 100118\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667141723000368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141723000368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Controlled synthesis of MOF-derived hollow and yolk–shell nanocages for improved water oxidation and selective ethylene glycol reformation
Delicately designed metal–organic framework (MOF)-derived nanostructured electrocatalysts are essential for improving the reaction kinetics of the oxygen evolution reaction and tuning the selectivity of small organic molecule oxidation reactions. Herein, novel oxalate-modified hollow CoFe-based layered double hydroxide nanocages (h-CoFe-LDH NCs) and yolk–shell ZIF@CoFe-LDH nanocages (ys-ZIF@CoFe-LDH NCs) are developed through an etching–doping reconstruction strategy from a Co-based MOF precursor (ZIF-67). The distinctive nanostructures, along with the incorporation of the secondary metal element and intercalated oxalate groups, enable h-CoFe-LDH NCs and ys-ZIF@CoFe-LDH NCs to expose more active sites with high intrinsic activity. The resultant h-CoFe-LDH NCs exhibit outstanding OER activity with an overpotential of only 278 mV to deliver a current density of 50 mA cm−2. Additionally, controlling the reconstruction degree enables the formation of ys-ZIF@CoFe-LDH NCs with a yolk–shell nanocage nanostructure, which show outstanding electrocatalytic performance for the selective ethylene glycol oxidation reaction (EGOR) toward formate, with a Faradaic efficiency of up to 91%. Consequently, a hybrid water electrolysis system integrating the EGOR and the hydrogen evolution reaction using Pt/C||ys-ZIF@CoFe-LDH NCs is explored for energy-saving hydrogen production, requiring a cell voltage 127 mV lower than water electrolysis to achieve a current density of 50 mA cm−2. This work demonstrates a feasible way to design advanced MOF-derived electrocatalysts toward enhanced electrocatalytic reactions.