{"title":"爱尔兰豌豆碾磨过程的研究:近红外光谱、面粉糊化特性和面团流变学","authors":"Mariana Maçãs , Alessandro Ferragina , Bárbara Biduski , Karen Hussey , Nooshin Vahedikia , Elke Arendt , Eimear Gallagher","doi":"10.1016/j.foostr.2023.100351","DOIUrl":null,"url":null,"abstract":"<div><p><span>Peas contain valuable macronutrients, such as protein and dietary fibre, associated with health benefits. Blending pea flour (PF) with wheat flour (WT) can improve the nutritional profile of bakery products. In addition, the use of locally grown peas for food innovation activities can benefit the environment and the local economy. However, the pea milling process is of paramount importance and can affect the final flour quality. This study aims to evaluate the influence of different milling processes of Irish-grown peas on flour composition, spectral profile (Near Infrared - NIR), pasting properties and dough rheology. Three mills were used: roller (RM), hammer (HM) and cutting (CM) producing RM, HM and CM flours, respectively. A commercial strong wheat flour was used as the base flour. For producing doughs, wheat flour was blended with each pea flour at a 15:85 (pea: wheat). Flour composition, particle size, Scanning Electron Microscopy (SEM), dough mixing properties, viscosity profile, gel texture, dough extensibility and rheology were assessed for the control, all pea flours and flour blends. The hammer mill produced the highest yield of pea flour (93.9 %). </span>Near Infrared Spectroscopy<span> reflected the same results for proximate composition, and the PCA and was able to discriminate the main differences between flour samples. SEM demonstrated that higher particle sizes obtained from the CM tended to have larger starch and protein matrix aggregates. Pea flour from the RM presented the highest viscosity profile and hardness, most likely due to the higher starch and lower total dietary fibre content. The lower pasting viscosity profile of pea flour obtained from CM is most likely due to a high level of damaged starch present in this flour. There were no significant differences found among WT and flour blends for gel hardness. This may imply that the incorporation of 15 % HM and CM flours perhaps will not impact the staling process of the final bread products. Further research is being undertaken to examine the influence of the pea milling process on bread-making performance.</span></p></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"38 ","pages":"Article 100351"},"PeriodicalIF":5.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study of the milling process of Irish-grown peas: NIR spectroscopy, flour pasting properties and dough rheology\",\"authors\":\"Mariana Maçãs , Alessandro Ferragina , Bárbara Biduski , Karen Hussey , Nooshin Vahedikia , Elke Arendt , Eimear Gallagher\",\"doi\":\"10.1016/j.foostr.2023.100351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Peas contain valuable macronutrients, such as protein and dietary fibre, associated with health benefits. Blending pea flour (PF) with wheat flour (WT) can improve the nutritional profile of bakery products. In addition, the use of locally grown peas for food innovation activities can benefit the environment and the local economy. However, the pea milling process is of paramount importance and can affect the final flour quality. This study aims to evaluate the influence of different milling processes of Irish-grown peas on flour composition, spectral profile (Near Infrared - NIR), pasting properties and dough rheology. Three mills were used: roller (RM), hammer (HM) and cutting (CM) producing RM, HM and CM flours, respectively. A commercial strong wheat flour was used as the base flour. For producing doughs, wheat flour was blended with each pea flour at a 15:85 (pea: wheat). Flour composition, particle size, Scanning Electron Microscopy (SEM), dough mixing properties, viscosity profile, gel texture, dough extensibility and rheology were assessed for the control, all pea flours and flour blends. The hammer mill produced the highest yield of pea flour (93.9 %). </span>Near Infrared Spectroscopy<span> reflected the same results for proximate composition, and the PCA and was able to discriminate the main differences between flour samples. SEM demonstrated that higher particle sizes obtained from the CM tended to have larger starch and protein matrix aggregates. Pea flour from the RM presented the highest viscosity profile and hardness, most likely due to the higher starch and lower total dietary fibre content. The lower pasting viscosity profile of pea flour obtained from CM is most likely due to a high level of damaged starch present in this flour. There were no significant differences found among WT and flour blends for gel hardness. This may imply that the incorporation of 15 % HM and CM flours perhaps will not impact the staling process of the final bread products. Further research is being undertaken to examine the influence of the pea milling process on bread-making performance.</span></p></div>\",\"PeriodicalId\":48640,\"journal\":{\"name\":\"Food Structure-Netherlands\",\"volume\":\"38 \",\"pages\":\"Article 100351\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Structure-Netherlands\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213329123000448\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Structure-Netherlands","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213329123000448","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
A study of the milling process of Irish-grown peas: NIR spectroscopy, flour pasting properties and dough rheology
Peas contain valuable macronutrients, such as protein and dietary fibre, associated with health benefits. Blending pea flour (PF) with wheat flour (WT) can improve the nutritional profile of bakery products. In addition, the use of locally grown peas for food innovation activities can benefit the environment and the local economy. However, the pea milling process is of paramount importance and can affect the final flour quality. This study aims to evaluate the influence of different milling processes of Irish-grown peas on flour composition, spectral profile (Near Infrared - NIR), pasting properties and dough rheology. Three mills were used: roller (RM), hammer (HM) and cutting (CM) producing RM, HM and CM flours, respectively. A commercial strong wheat flour was used as the base flour. For producing doughs, wheat flour was blended with each pea flour at a 15:85 (pea: wheat). Flour composition, particle size, Scanning Electron Microscopy (SEM), dough mixing properties, viscosity profile, gel texture, dough extensibility and rheology were assessed for the control, all pea flours and flour blends. The hammer mill produced the highest yield of pea flour (93.9 %). Near Infrared Spectroscopy reflected the same results for proximate composition, and the PCA and was able to discriminate the main differences between flour samples. SEM demonstrated that higher particle sizes obtained from the CM tended to have larger starch and protein matrix aggregates. Pea flour from the RM presented the highest viscosity profile and hardness, most likely due to the higher starch and lower total dietary fibre content. The lower pasting viscosity profile of pea flour obtained from CM is most likely due to a high level of damaged starch present in this flour. There were no significant differences found among WT and flour blends for gel hardness. This may imply that the incorporation of 15 % HM and CM flours perhaps will not impact the staling process of the final bread products. Further research is being undertaken to examine the influence of the pea milling process on bread-making performance.
期刊介绍:
Food Structure is the premier international forum devoted to the publication of high-quality original research on food structure. The focus of this journal is on food structure in the context of its relationship with molecular composition, processing and macroscopic properties (e.g., shelf stability, sensory properties, etc.). Manuscripts that only report qualitative findings and micrographs and that lack sound hypothesis-driven, quantitative structure-function research are not accepted. Significance of the research findings for the food science community and/or industry must also be highlighted.