Luca Ugo Fontanella, Mauro Tomassetti, Giovanni Visco, Maria Pia Sammartino
{"title":"2018年初罗马雨水的特征,旨在找到化学物理参数与污染源之间的相关性:一项统计研究","authors":"Luca Ugo Fontanella, Mauro Tomassetti, Giovanni Visco, Maria Pia Sammartino","doi":"10.1007/s10874-020-09409-2","DOIUrl":null,"url":null,"abstract":"<p>Analysis of rainwater in historical cities plays a key role to save ancient monuments from atmospheric agents. In this study we sampled the Rome’s rainwater from February to July of 2018 and we analysed them to determine their chemical and physical parameters: pH, redox potential, conductivity, temperature, and the concentration of the main inorganic ions (Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>++</sup>, Mg<sup>++</sup>, F<sup>?</sup>, Cl<sup>?</sup>, NO<sub>3</sub><sup>?</sup>, SO<sub>4</sub><sup>??</sup>). The volume of the daily fallen rainwater, the speed and direction of the wind in the sampling site were also collected. In order to find a correlation between all the above data we used the Principal Component Analysis (PCA). Results evidenced that there aren’t authentic “acid rains” as the minimum pH value that we found is 5.2. In some cases high concentrations of nitrates and sulphates were found with maximum values of 12.4?ppm and 18.7?ppm respectively. We also found no correlation between the rainwater’s composition and the seasonal period; on the contrary, the speed and direction of the wind, especially when coming from the sea or industrial country near Rome, play a noticeable role on the rainwater composition.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"78 1","pages":"1 - 16"},"PeriodicalIF":3.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09409-2","citationCount":"1","resultStr":"{\"title\":\"Characterization of Rome’s rainwater in the early of 2018 aiming to find correlations between chemical-physical parameters and sources of pollution: a statistical study\",\"authors\":\"Luca Ugo Fontanella, Mauro Tomassetti, Giovanni Visco, Maria Pia Sammartino\",\"doi\":\"10.1007/s10874-020-09409-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Analysis of rainwater in historical cities plays a key role to save ancient monuments from atmospheric agents. In this study we sampled the Rome’s rainwater from February to July of 2018 and we analysed them to determine their chemical and physical parameters: pH, redox potential, conductivity, temperature, and the concentration of the main inorganic ions (Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>++</sup>, Mg<sup>++</sup>, F<sup>?</sup>, Cl<sup>?</sup>, NO<sub>3</sub><sup>?</sup>, SO<sub>4</sub><sup>??</sup>). The volume of the daily fallen rainwater, the speed and direction of the wind in the sampling site were also collected. In order to find a correlation between all the above data we used the Principal Component Analysis (PCA). Results evidenced that there aren’t authentic “acid rains” as the minimum pH value that we found is 5.2. In some cases high concentrations of nitrates and sulphates were found with maximum values of 12.4?ppm and 18.7?ppm respectively. We also found no correlation between the rainwater’s composition and the seasonal period; on the contrary, the speed and direction of the wind, especially when coming from the sea or industrial country near Rome, play a noticeable role on the rainwater composition.</p>\",\"PeriodicalId\":611,\"journal\":{\"name\":\"Journal of Atmospheric Chemistry\",\"volume\":\"78 1\",\"pages\":\"1 - 16\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2020-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10874-020-09409-2\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric Chemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10874-020-09409-2\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-020-09409-2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Characterization of Rome’s rainwater in the early of 2018 aiming to find correlations between chemical-physical parameters and sources of pollution: a statistical study
Analysis of rainwater in historical cities plays a key role to save ancient monuments from atmospheric agents. In this study we sampled the Rome’s rainwater from February to July of 2018 and we analysed them to determine their chemical and physical parameters: pH, redox potential, conductivity, temperature, and the concentration of the main inorganic ions (Na+, K+, Ca++, Mg++, F?, Cl?, NO3?, SO4??). The volume of the daily fallen rainwater, the speed and direction of the wind in the sampling site were also collected. In order to find a correlation between all the above data we used the Principal Component Analysis (PCA). Results evidenced that there aren’t authentic “acid rains” as the minimum pH value that we found is 5.2. In some cases high concentrations of nitrates and sulphates were found with maximum values of 12.4?ppm and 18.7?ppm respectively. We also found no correlation between the rainwater’s composition and the seasonal period; on the contrary, the speed and direction of the wind, especially when coming from the sea or industrial country near Rome, play a noticeable role on the rainwater composition.
期刊介绍:
The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics:
Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only.
The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere.
Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere.
Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.