{"title":"微电网弹性安全保障的主动故障管理","authors":"Pohan Chen;Kai Sun","doi":"10.23919/IEN.2022.0039","DOIUrl":null,"url":null,"abstract":"Active fault management (AFM) based on federated learning is established to realize ultra-integration of hundreds of microgrids, enabling them to output reference values fast enough during fault ride through (see the Figure, which is reprinted with permission from ref. iEnergy, 4: 453–462, 2022 © 2022 The Author(s)). AFM is first formulated as a distributed optimization problem. Then, federated is used to learning to train each microgrid's neural network. One concern for integrating optimization into power grid fault management and dynamic control is real-time performance because optimization usually takes more time to get reference values than widely used PID feedback control. To address this concern, controller hardware-in-the-loop (HIP) simulation with RTDS simulators is used to demonstrate the real-time performance of distributed-optimization-based fault management algorithms. In the hardware setup, one individual computer exclusively runs one microgrid or PV farm's control algorithm. Real-time simulation results demonstrate that the algorithms can output reference values within 100 ms, which can be considered well enough for fault management and dynamic control.","PeriodicalId":100648,"journal":{"name":"iEnergy","volume":"1 4","pages":"394-394"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9732629/10007897/10007880.pdf","citationCount":"0","resultStr":"{\"title\":\"An active fault management for microgrids resilience safety-assurance\",\"authors\":\"Pohan Chen;Kai Sun\",\"doi\":\"10.23919/IEN.2022.0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Active fault management (AFM) based on federated learning is established to realize ultra-integration of hundreds of microgrids, enabling them to output reference values fast enough during fault ride through (see the Figure, which is reprinted with permission from ref. iEnergy, 4: 453–462, 2022 © 2022 The Author(s)). AFM is first formulated as a distributed optimization problem. Then, federated is used to learning to train each microgrid's neural network. One concern for integrating optimization into power grid fault management and dynamic control is real-time performance because optimization usually takes more time to get reference values than widely used PID feedback control. To address this concern, controller hardware-in-the-loop (HIP) simulation with RTDS simulators is used to demonstrate the real-time performance of distributed-optimization-based fault management algorithms. In the hardware setup, one individual computer exclusively runs one microgrid or PV farm's control algorithm. Real-time simulation results demonstrate that the algorithms can output reference values within 100 ms, which can be considered well enough for fault management and dynamic control.\",\"PeriodicalId\":100648,\"journal\":{\"name\":\"iEnergy\",\"volume\":\"1 4\",\"pages\":\"394-394\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/9732629/10007897/10007880.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iEnergy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10007880/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iEnergy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10007880/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
An active fault management for microgrids resilience safety-assurance
Active fault management (AFM) based on federated learning is established to realize ultra-integration of hundreds of microgrids, enabling them to output reference values fast enough during fault ride through (see the Figure, which is reprinted with permission from ref. iEnergy, 4: 453–462, 2022 © 2022 The Author(s)). AFM is first formulated as a distributed optimization problem. Then, federated is used to learning to train each microgrid's neural network. One concern for integrating optimization into power grid fault management and dynamic control is real-time performance because optimization usually takes more time to get reference values than widely used PID feedback control. To address this concern, controller hardware-in-the-loop (HIP) simulation with RTDS simulators is used to demonstrate the real-time performance of distributed-optimization-based fault management algorithms. In the hardware setup, one individual computer exclusively runs one microgrid or PV farm's control algorithm. Real-time simulation results demonstrate that the algorithms can output reference values within 100 ms, which can be considered well enough for fault management and dynamic control.