基于数据驱动的Tube随机预测控制

SEBASTIAN Kerz;JOHANNES Teutsch;TIM Brüdigam;MARION Leibold;DIRK Wollherr
{"title":"基于数据驱动的Tube随机预测控制","authors":"SEBASTIAN Kerz;JOHANNES Teutsch;TIM Brüdigam;MARION Leibold;DIRK Wollherr","doi":"10.1109/OJCSYS.2023.3291596","DOIUrl":null,"url":null,"abstract":"A powerful result from behavioral systems theory known as the fundamental lemma allows for predictive control akin to Model Predictive Control (MPC) for linear time-invariant (LTI) systems with unknown dynamics purely from data. While most data-driven predictive control literature focuses on robustness with respect to measurement noise, only a few works consider exploiting probabilistic information of disturbances for performance-oriented control as in stochastic MPC. This work proposes a novel data-driven stochastic predictive control scheme for chance-constrained LTI systems subject to measurement noise and additive stochastic disturbances. In order to render the otherwise stochastic and intractable optimal control problem deterministic, our approach leverages ideas from tube-based MPC by decomposing the state into a deterministic nominal state driven by inputs and a stochastic error state affected by disturbances. Satisfaction of original chance constraints is guaranteed by tightening nominal constraints probabilistically with respect to additive disturbances and robustly with respect to measurement noise. The resulting data-driven receding horizon optimal control problem is lightweight, recursively feasible, and renders the closed loop input-to-state stable in the presence of both additive disturbances and measurement noise. We demonstrate the effectiveness of the proposed approach in a simulation example.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"2 ","pages":"185-199"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9552933/9973428/10171461.pdf","citationCount":"5","resultStr":"{\"title\":\"Data-Driven Tube-Based Stochastic Predictive Control\",\"authors\":\"SEBASTIAN Kerz;JOHANNES Teutsch;TIM Brüdigam;MARION Leibold;DIRK Wollherr\",\"doi\":\"10.1109/OJCSYS.2023.3291596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A powerful result from behavioral systems theory known as the fundamental lemma allows for predictive control akin to Model Predictive Control (MPC) for linear time-invariant (LTI) systems with unknown dynamics purely from data. While most data-driven predictive control literature focuses on robustness with respect to measurement noise, only a few works consider exploiting probabilistic information of disturbances for performance-oriented control as in stochastic MPC. This work proposes a novel data-driven stochastic predictive control scheme for chance-constrained LTI systems subject to measurement noise and additive stochastic disturbances. In order to render the otherwise stochastic and intractable optimal control problem deterministic, our approach leverages ideas from tube-based MPC by decomposing the state into a deterministic nominal state driven by inputs and a stochastic error state affected by disturbances. Satisfaction of original chance constraints is guaranteed by tightening nominal constraints probabilistically with respect to additive disturbances and robustly with respect to measurement noise. The resulting data-driven receding horizon optimal control problem is lightweight, recursively feasible, and renders the closed loop input-to-state stable in the presence of both additive disturbances and measurement noise. We demonstrate the effectiveness of the proposed approach in a simulation example.\",\"PeriodicalId\":73299,\"journal\":{\"name\":\"IEEE open journal of control systems\",\"volume\":\"2 \",\"pages\":\"185-199\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/9552933/9973428/10171461.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of control systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10171461/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10171461/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

行为系统理论的一个强大结果被称为基本引理,它允许对纯数据动态未知的线性时不变(LTI)系统进行类似于模型预测控制(MPC)的预测控制。虽然大多数数据驱动的预测控制文献都关注测量噪声的鲁棒性,但只有少数工作考虑利用扰动的概率信息进行性能导向控制,如在随机MPC中。针对具有测量噪声和附加随机扰动的机会约束LTI系统,本文提出了一种新的数据驱动随机预测控制方案。为了使原本随机且棘手的最优控制问题具有确定性,我们的方法利用了基于管的MPC的思想,将状态分解为由输入驱动的确定标称状态和受扰动影响的随机误差状态。通过对附加扰动概率地和对测量噪声鲁棒地收紧标称约束来保证原始机会约束的满足。由此产生的数据驱动的后退时域最优控制问题是轻量级的,递归可行的,并且在存在附加扰动和测量噪声的情况下使闭环输入状态稳定。我们在一个仿真例子中证明了所提出的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-Driven Tube-Based Stochastic Predictive Control
A powerful result from behavioral systems theory known as the fundamental lemma allows for predictive control akin to Model Predictive Control (MPC) for linear time-invariant (LTI) systems with unknown dynamics purely from data. While most data-driven predictive control literature focuses on robustness with respect to measurement noise, only a few works consider exploiting probabilistic information of disturbances for performance-oriented control as in stochastic MPC. This work proposes a novel data-driven stochastic predictive control scheme for chance-constrained LTI systems subject to measurement noise and additive stochastic disturbances. In order to render the otherwise stochastic and intractable optimal control problem deterministic, our approach leverages ideas from tube-based MPC by decomposing the state into a deterministic nominal state driven by inputs and a stochastic error state affected by disturbances. Satisfaction of original chance constraints is guaranteed by tightening nominal constraints probabilistically with respect to additive disturbances and robustly with respect to measurement noise. The resulting data-driven receding horizon optimal control problem is lightweight, recursively feasible, and renders the closed loop input-to-state stable in the presence of both additive disturbances and measurement noise. We demonstrate the effectiveness of the proposed approach in a simulation example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Erratum to “Learning to Boost the Performance of Stable Nonlinear Systems” Generalizing Robust Control Barrier Functions From a Controller Design Perspective 2024 Index IEEE Open Journal of Control Systems Vol. 3 Front Cover Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1