具有概率安全和稳定性约束的离散时间不确定非线性系统的学习

Iman Salehi;Tyler Taplin;Ashwin P. Dani
{"title":"具有概率安全和稳定性约束的离散时间不确定非线性系统的学习","authors":"Iman Salehi;Tyler Taplin;Ashwin P. Dani","doi":"10.1109/OJCSYS.2022.3216545","DOIUrl":null,"url":null,"abstract":"This paper presents a discrete-time dynamical system model learning method from demonstration while providing probabilistic guarantees on the safety and stability of the learned model. The controlled dynamic model of a discrete-time system with a zero-mean Gaussian process noise is approximated using an Extreme Learning Machine (ELM) whose parameters are learned subject to chance constraints derived using a discrete-time control barrier function and discrete-time control Lyapunov function in the presence of the ELM reconstruction error. To estimate the ELM parameters a quadratically constrained quadratic program (QCQP) is developed subject to the constraints that are only required to be evaluated at sampled points. Simulations validate that the system model learned using the proposed method can reproduce the demonstrations inside a prescribed safe set while converging to the desired goal location starting from various different initial conditions inside the safe set. Furthermore, it is shown that the learned model can adapt to changes in goal location during reproductions without violating the stability and safety constraints.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"1 ","pages":"354-365"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9552933/9683993/09926168.pdf","citationCount":"2","resultStr":"{\"title\":\"Learning Discrete-Time Uncertain Nonlinear Systems With Probabilistic Safety and Stability Constraints\",\"authors\":\"Iman Salehi;Tyler Taplin;Ashwin P. Dani\",\"doi\":\"10.1109/OJCSYS.2022.3216545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a discrete-time dynamical system model learning method from demonstration while providing probabilistic guarantees on the safety and stability of the learned model. The controlled dynamic model of a discrete-time system with a zero-mean Gaussian process noise is approximated using an Extreme Learning Machine (ELM) whose parameters are learned subject to chance constraints derived using a discrete-time control barrier function and discrete-time control Lyapunov function in the presence of the ELM reconstruction error. To estimate the ELM parameters a quadratically constrained quadratic program (QCQP) is developed subject to the constraints that are only required to be evaluated at sampled points. Simulations validate that the system model learned using the proposed method can reproduce the demonstrations inside a prescribed safe set while converging to the desired goal location starting from various different initial conditions inside the safe set. Furthermore, it is shown that the learned model can adapt to changes in goal location during reproductions without violating the stability and safety constraints.\",\"PeriodicalId\":73299,\"journal\":{\"name\":\"IEEE open journal of control systems\",\"volume\":\"1 \",\"pages\":\"354-365\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/9552933/9683993/09926168.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of control systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9926168/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9926168/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文从演示中提出了一种离散时间动态系统模型学习方法,同时为学习模型的安全性和稳定性提供了概率保证。具有零均值高斯过程噪声的离散时间系统的受控动态模型使用极限学习机(ELM)进行近似,在存在ELM重构误差的情况下,极限学习机的参数在使用离散时间控制屏障函数和离散时间控制李雅普诺夫函数导出的机会约束下进行学习。为了估计ELM参数,开发了一个二次约束二次规划(QCQP),该规划受仅需要在采样点进行评估的约束。仿真验证了使用所提出的方法学习的系统模型可以在规定的安全集中再现演示,同时从安全集中的各种不同初始条件开始收敛到期望的目标位置。此外,研究表明,所学习的模型可以在不违反稳定性和安全约束的情况下适应复制过程中目标位置的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning Discrete-Time Uncertain Nonlinear Systems With Probabilistic Safety and Stability Constraints
This paper presents a discrete-time dynamical system model learning method from demonstration while providing probabilistic guarantees on the safety and stability of the learned model. The controlled dynamic model of a discrete-time system with a zero-mean Gaussian process noise is approximated using an Extreme Learning Machine (ELM) whose parameters are learned subject to chance constraints derived using a discrete-time control barrier function and discrete-time control Lyapunov function in the presence of the ELM reconstruction error. To estimate the ELM parameters a quadratically constrained quadratic program (QCQP) is developed subject to the constraints that are only required to be evaluated at sampled points. Simulations validate that the system model learned using the proposed method can reproduce the demonstrations inside a prescribed safe set while converging to the desired goal location starting from various different initial conditions inside the safe set. Furthermore, it is shown that the learned model can adapt to changes in goal location during reproductions without violating the stability and safety constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Erratum to “Learning to Boost the Performance of Stable Nonlinear Systems” Generalizing Robust Control Barrier Functions From a Controller Design Perspective 2024 Index IEEE Open Journal of Control Systems Vol. 3 Front Cover Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1