Jessica A. Martinez;Alessandro Arduino;Oriano Bottauscio;Luca Zilberti
{"title":"基于$B_{1}^+$的脑受试者特异性SAR图的电学性质层析成像评价和校正","authors":"Jessica A. Martinez;Alessandro Arduino;Oriano Bottauscio;Luca Zilberti","doi":"10.1109/JERM.2023.3236153","DOIUrl":null,"url":null,"abstract":"The specific absorption rate (SAR) estimates the amount of power absorbed by the tissue and is determined by the electrical conductivity and the E-field. Conductivity can be estimated using Electric Properties Tomography (EPT) but only the E-field component associated with \n<inline-formula><tex-math>$B_{1}^+$</tex-math></inline-formula>\n can be deduced from \n<inline-formula><tex-math>$B_{1}$</tex-math></inline-formula>\n-mapping. Herein, a correction factor was calculated to compensate for the differences between the actual SAR and the one obtained with \n<inline-formula><tex-math>$B_{1}^+$</tex-math></inline-formula>\n. Numerical simulations were performed for 27 head models at \n<inline-formula><tex-math>$128 \\,\\mathrm{M}\\mathrm{Hz}$</tex-math></inline-formula>\n. Ground-truth local-SAR and 10g-SAR (SAR\n<sub>GT</sub>\n) were computed using the exact electrical conductivity and the E-field. Estimated local-SAR and 10g-SAR (SAR\n<sub>EST</sub>\n) were computed using the electrical conductivity obtained with a convection-reaction EPT and the E-field obtained from \n<inline-formula><tex-math>$B_{1}^+$</tex-math></inline-formula>\n. Correction factors (CFs) were estimated for gray matter, white matter, and cerebrospinal fluid (CSF). A comparison was performed for different levels of signal-to-noise ratios (SNR). Local-SAR/10g-SAR CF was 3.08 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n 0/06 / 2.11 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n 0.04 for gray matter, 1.79 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n 0/05 / 2.06 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n 0.04 for white matter, and 2.59 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n 0/05 / 1.95 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n 0.03 for CSF. SAR\n<sub>EST</sub>\n without CF were underestimated (ratio across [\n<inline-formula><tex-math>$\\infty$</tex-math></inline-formula>\n - 25] SNRs: 0.52 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n 0.02 for local-SAR; 0.55 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n 0.01 for 10g-SAR). After correction, SAR\n<sub>EST</sub>\n was equivalent to SAR\n<sub>GT</sub>\n (ratio across [\n<inline-formula><tex-math>$\\infty$</tex-math></inline-formula>\n - 25] SNRs: 0.97 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n 0.02 for local-SAR; 1.06 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n 0.01 for 10g-SAR). SAR maps based on \n<inline-formula><tex-math>$B_{1}^+$</tex-math></inline-formula>\n can be corrected with a correction factor to compensate for potential differences between the actual SAR and the SAR calculated with the E-field derived from \n<inline-formula><tex-math>$B_{1}^+$</tex-math></inline-formula>\n.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"7 2","pages":"168-175"},"PeriodicalIF":3.0000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/7397573/10138047/10044569.pdf","citationCount":"0","resultStr":"{\"title\":\"Evaluation and Correction of $B_{1}^+$-Based Brain Subject-Specific SAR Maps Using Electrical Properties Tomography\",\"authors\":\"Jessica A. Martinez;Alessandro Arduino;Oriano Bottauscio;Luca Zilberti\",\"doi\":\"10.1109/JERM.2023.3236153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The specific absorption rate (SAR) estimates the amount of power absorbed by the tissue and is determined by the electrical conductivity and the E-field. Conductivity can be estimated using Electric Properties Tomography (EPT) but only the E-field component associated with \\n<inline-formula><tex-math>$B_{1}^+$</tex-math></inline-formula>\\n can be deduced from \\n<inline-formula><tex-math>$B_{1}$</tex-math></inline-formula>\\n-mapping. Herein, a correction factor was calculated to compensate for the differences between the actual SAR and the one obtained with \\n<inline-formula><tex-math>$B_{1}^+$</tex-math></inline-formula>\\n. Numerical simulations were performed for 27 head models at \\n<inline-formula><tex-math>$128 \\\\,\\\\mathrm{M}\\\\mathrm{Hz}$</tex-math></inline-formula>\\n. Ground-truth local-SAR and 10g-SAR (SAR\\n<sub>GT</sub>\\n) were computed using the exact electrical conductivity and the E-field. Estimated local-SAR and 10g-SAR (SAR\\n<sub>EST</sub>\\n) were computed using the electrical conductivity obtained with a convection-reaction EPT and the E-field obtained from \\n<inline-formula><tex-math>$B_{1}^+$</tex-math></inline-formula>\\n. Correction factors (CFs) were estimated for gray matter, white matter, and cerebrospinal fluid (CSF). A comparison was performed for different levels of signal-to-noise ratios (SNR). Local-SAR/10g-SAR CF was 3.08 \\n<inline-formula><tex-math>$\\\\pm$</tex-math></inline-formula>\\n 0/06 / 2.11 \\n<inline-formula><tex-math>$\\\\pm$</tex-math></inline-formula>\\n 0.04 for gray matter, 1.79 \\n<inline-formula><tex-math>$\\\\pm$</tex-math></inline-formula>\\n 0/05 / 2.06 \\n<inline-formula><tex-math>$\\\\pm$</tex-math></inline-formula>\\n 0.04 for white matter, and 2.59 \\n<inline-formula><tex-math>$\\\\pm$</tex-math></inline-formula>\\n 0/05 / 1.95 \\n<inline-formula><tex-math>$\\\\pm$</tex-math></inline-formula>\\n 0.03 for CSF. SAR\\n<sub>EST</sub>\\n without CF were underestimated (ratio across [\\n<inline-formula><tex-math>$\\\\infty$</tex-math></inline-formula>\\n - 25] SNRs: 0.52 \\n<inline-formula><tex-math>$\\\\pm$</tex-math></inline-formula>\\n 0.02 for local-SAR; 0.55 \\n<inline-formula><tex-math>$\\\\pm$</tex-math></inline-formula>\\n 0.01 for 10g-SAR). After correction, SAR\\n<sub>EST</sub>\\n was equivalent to SAR\\n<sub>GT</sub>\\n (ratio across [\\n<inline-formula><tex-math>$\\\\infty$</tex-math></inline-formula>\\n - 25] SNRs: 0.97 \\n<inline-formula><tex-math>$\\\\pm$</tex-math></inline-formula>\\n 0.02 for local-SAR; 1.06 \\n<inline-formula><tex-math>$\\\\pm$</tex-math></inline-formula>\\n 0.01 for 10g-SAR). SAR maps based on \\n<inline-formula><tex-math>$B_{1}^+$</tex-math></inline-formula>\\n can be corrected with a correction factor to compensate for potential differences between the actual SAR and the SAR calculated with the E-field derived from \\n<inline-formula><tex-math>$B_{1}^+$</tex-math></inline-formula>\\n.\",\"PeriodicalId\":29955,\"journal\":{\"name\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"volume\":\"7 2\",\"pages\":\"168-175\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/7397573/10138047/10044569.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10044569/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10044569/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Evaluation and Correction of $B_{1}^+$-Based Brain Subject-Specific SAR Maps Using Electrical Properties Tomography
The specific absorption rate (SAR) estimates the amount of power absorbed by the tissue and is determined by the electrical conductivity and the E-field. Conductivity can be estimated using Electric Properties Tomography (EPT) but only the E-field component associated with
$B_{1}^+$
can be deduced from
$B_{1}$
-mapping. Herein, a correction factor was calculated to compensate for the differences between the actual SAR and the one obtained with
$B_{1}^+$
. Numerical simulations were performed for 27 head models at
$128 \,\mathrm{M}\mathrm{Hz}$
. Ground-truth local-SAR and 10g-SAR (SAR
GT
) were computed using the exact electrical conductivity and the E-field. Estimated local-SAR and 10g-SAR (SAR
EST
) were computed using the electrical conductivity obtained with a convection-reaction EPT and the E-field obtained from
$B_{1}^+$
. Correction factors (CFs) were estimated for gray matter, white matter, and cerebrospinal fluid (CSF). A comparison was performed for different levels of signal-to-noise ratios (SNR). Local-SAR/10g-SAR CF was 3.08
$\pm$
0/06 / 2.11
$\pm$
0.04 for gray matter, 1.79
$\pm$
0/05 / 2.06
$\pm$
0.04 for white matter, and 2.59
$\pm$
0/05 / 1.95
$\pm$
0.03 for CSF. SAR
EST
without CF were underestimated (ratio across [
$\infty$
- 25] SNRs: 0.52
$\pm$
0.02 for local-SAR; 0.55
$\pm$
0.01 for 10g-SAR). After correction, SAR
EST
was equivalent to SAR
GT
(ratio across [
$\infty$
- 25] SNRs: 0.97
$\pm$
0.02 for local-SAR; 1.06
$\pm$
0.01 for 10g-SAR). SAR maps based on
$B_{1}^+$
can be corrected with a correction factor to compensate for potential differences between the actual SAR and the SAR calculated with the E-field derived from
$B_{1}^+$
.