基于模型的RGB水下6D姿态估计

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2023-09-27 DOI:10.1109/LRA.2023.3320028
Davide Sapienza;Elena Govi;Sara Aldhaheri;Marko Bertogna;Eloy Roura;Èric Pairet;Micaela Verucchi;Paola Ardón
{"title":"基于模型的RGB水下6D姿态估计","authors":"Davide Sapienza;Elena Govi;Sara Aldhaheri;Marko Bertogna;Eloy Roura;Èric Pairet;Micaela Verucchi;Paola Ardón","doi":"10.1109/LRA.2023.3320028","DOIUrl":null,"url":null,"abstract":"Object pose estimation underwater allows an autonomous system to perform tracking and intervention tasks. Nonetheless, underwater target pose estimation is remarkably challenging due to, among many factors, limited visibility, light scattering, cluttered environments, and constantly varying water conditions. An approach is to employ sonar or laser sensing to acquire 3D data, however, the data is not clear and the sensors expensive. For this reason, the community has focused on extracting pose estimates from RGB input. In this work, we propose an approach that leverages 2D object detection to reliably compute 6D pose estimates in different underwater scenarios. We test our proposal with 4 objects with symmetrical shapes and poor texture spanning across \n<inline-formula><tex-math>$33{,}920$</tex-math></inline-formula>\n synthetic and 10 real scenes. All objects and scenes are made available in an open-source dataset that includes annotations for object detection and pose estimation. When benchmarking against similar end-to-end methodologies for 6D object pose estimation, our pipeline provides estimates that are \n<inline-formula><tex-math>$\\sim \\!8{\\%}$</tex-math></inline-formula>\n more accurate. We also demonstrate the real-world usability of our pose estimation pipeline on an underwater robotic manipulator in a reaching task.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"8 11","pages":"7535-7542"},"PeriodicalIF":4.6000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Model-Based Underwater 6D Pose Estimation From RGB\",\"authors\":\"Davide Sapienza;Elena Govi;Sara Aldhaheri;Marko Bertogna;Eloy Roura;Èric Pairet;Micaela Verucchi;Paola Ardón\",\"doi\":\"10.1109/LRA.2023.3320028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object pose estimation underwater allows an autonomous system to perform tracking and intervention tasks. Nonetheless, underwater target pose estimation is remarkably challenging due to, among many factors, limited visibility, light scattering, cluttered environments, and constantly varying water conditions. An approach is to employ sonar or laser sensing to acquire 3D data, however, the data is not clear and the sensors expensive. For this reason, the community has focused on extracting pose estimates from RGB input. In this work, we propose an approach that leverages 2D object detection to reliably compute 6D pose estimates in different underwater scenarios. We test our proposal with 4 objects with symmetrical shapes and poor texture spanning across \\n<inline-formula><tex-math>$33{,}920$</tex-math></inline-formula>\\n synthetic and 10 real scenes. All objects and scenes are made available in an open-source dataset that includes annotations for object detection and pose estimation. When benchmarking against similar end-to-end methodologies for 6D object pose estimation, our pipeline provides estimates that are \\n<inline-formula><tex-math>$\\\\sim \\\\!8{\\\\%}$</tex-math></inline-formula>\\n more accurate. We also demonstrate the real-world usability of our pose estimation pipeline on an underwater robotic manipulator in a reaching task.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"8 11\",\"pages\":\"7535-7542\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10265120/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10265120/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 1

摘要

水下物体姿态估计允许自主系统执行跟踪和干预任务。尽管如此,由于能见度有限、光散射、杂乱的环境和不断变化的水条件等诸多因素,水下目标姿态估计极具挑战性。一种方法是使用声纳或激光传感来获取3D数据,然而,数据不清楚,并且传感器昂贵。出于这个原因,社区专注于从RGB输入中提取姿势估计。在这项工作中,我们提出了一种方法,该方法利用2D对象检测来可靠地计算不同水下场景中的6D姿态估计。我们用4个形状对称、纹理差的物体测试了我们的方案,这些物体横跨33{,}920$的合成和10个真实场景。所有对象和场景都可以在开源数据集中使用,该数据集包括用于对象检测和姿态估计的注释。当针对6D物体姿态估计的类似端到端方法进行基准测试时,我们的管道提供的估计值为$\sim\!8{\%}$更准确。我们还展示了我们的姿态估计管道在水下机器人操纵器上的实际可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model-Based Underwater 6D Pose Estimation From RGB
Object pose estimation underwater allows an autonomous system to perform tracking and intervention tasks. Nonetheless, underwater target pose estimation is remarkably challenging due to, among many factors, limited visibility, light scattering, cluttered environments, and constantly varying water conditions. An approach is to employ sonar or laser sensing to acquire 3D data, however, the data is not clear and the sensors expensive. For this reason, the community has focused on extracting pose estimates from RGB input. In this work, we propose an approach that leverages 2D object detection to reliably compute 6D pose estimates in different underwater scenarios. We test our proposal with 4 objects with symmetrical shapes and poor texture spanning across $33{,}920$ synthetic and 10 real scenes. All objects and scenes are made available in an open-source dataset that includes annotations for object detection and pose estimation. When benchmarking against similar end-to-end methodologies for 6D object pose estimation, our pipeline provides estimates that are $\sim \!8{\%}$ more accurate. We also demonstrate the real-world usability of our pose estimation pipeline on an underwater robotic manipulator in a reaching task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Integrated Grasping Controller Leveraging Optical Proximity Sensors for Simultaneous Contact, Impact Reduction, and Force Control Single-Motor-Driven (4 + 2)-Fingered Robotic Gripper Capable of Expanding the Workable Space in the Extremely Confined Environment CMGFA: A BEV Segmentation Model Based on Cross-Modal Group-Mix Attention Feature Aggregator Visual-Inertial Localization Leveraging Skylight Polarization Pattern Constraints Demonstration Data-Driven Parameter Adjustment for Trajectory Planning in Highly Constrained Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1