基于深度强化学习的骨架手势识别关键帧选择

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2023-10-09 DOI:10.1109/LRA.2023.3322645
Minggang Gan;Jinting Liu;Yuxuan He;Aobo Chen;Qianzhao Ma
{"title":"基于深度强化学习的骨架手势识别关键帧选择","authors":"Minggang Gan;Jinting Liu;Yuxuan He;Aobo Chen;Qianzhao Ma","doi":"10.1109/LRA.2023.3322645","DOIUrl":null,"url":null,"abstract":"Skeleton-based gesture recognition has attracted extensive attention and has made great progress. However, mainstream methods generally treat all frames as equally important, which may limit performance, especially when dealing with high inter-class variance in gesture. To tackle this issue, we propose an approach that models a Markov decision process to identify keyframes while discarding irrelevant ones. This article proposes a deep reinforcement learning double-feature double-motion network comprising two main components: a baseline gesture recognition model and a frame selection network. These two components mutually influence each other, resulting in enhanced overall performance. Following the evaluation of the SHREC-17 and F-PHAB datasets, our proposed method demonstrates superior performance.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"8 11","pages":"7807-7814"},"PeriodicalIF":4.6000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Keyframe Selection Via Deep Reinforcement Learning for Skeleton-Based Gesture Recognition\",\"authors\":\"Minggang Gan;Jinting Liu;Yuxuan He;Aobo Chen;Qianzhao Ma\",\"doi\":\"10.1109/LRA.2023.3322645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Skeleton-based gesture recognition has attracted extensive attention and has made great progress. However, mainstream methods generally treat all frames as equally important, which may limit performance, especially when dealing with high inter-class variance in gesture. To tackle this issue, we propose an approach that models a Markov decision process to identify keyframes while discarding irrelevant ones. This article proposes a deep reinforcement learning double-feature double-motion network comprising two main components: a baseline gesture recognition model and a frame selection network. These two components mutually influence each other, resulting in enhanced overall performance. Following the evaluation of the SHREC-17 and F-PHAB datasets, our proposed method demonstrates superior performance.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"8 11\",\"pages\":\"7807-7814\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10274843/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10274843/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

基于骨架的手势识别已经引起了广泛的关注,并取得了很大的进展。然而,主流方法通常将所有帧视为同等重要的帧,这可能会限制性能,尤其是在处理手势中的高类间差异时。为了解决这个问题,我们提出了一种方法,对马尔可夫决策过程进行建模,以识别关键帧,同时丢弃不相关的关键帧。本文提出了一种深度强化学习双特征双运动网络,包括两个主要组件:基线手势识别模型和帧选择网络。这两个组件相互影响,从而提高了整体性能。在对SHREC-17和F-PHAB数据集进行评估后,我们提出的方法显示出优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Keyframe Selection Via Deep Reinforcement Learning for Skeleton-Based Gesture Recognition
Skeleton-based gesture recognition has attracted extensive attention and has made great progress. However, mainstream methods generally treat all frames as equally important, which may limit performance, especially when dealing with high inter-class variance in gesture. To tackle this issue, we propose an approach that models a Markov decision process to identify keyframes while discarding irrelevant ones. This article proposes a deep reinforcement learning double-feature double-motion network comprising two main components: a baseline gesture recognition model and a frame selection network. These two components mutually influence each other, resulting in enhanced overall performance. Following the evaluation of the SHREC-17 and F-PHAB datasets, our proposed method demonstrates superior performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Integrated Grasping Controller Leveraging Optical Proximity Sensors for Simultaneous Contact, Impact Reduction, and Force Control Single-Motor-Driven (4 + 2)-Fingered Robotic Gripper Capable of Expanding the Workable Space in the Extremely Confined Environment CMGFA: A BEV Segmentation Model Based on Cross-Modal Group-Mix Attention Feature Aggregator Visual-Inertial Localization Leveraging Skylight Polarization Pattern Constraints Demonstration Data-Driven Parameter Adjustment for Trajectory Planning in Highly Constrained Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1