V. Mahdikhah, A. Ataie, H. Akbari Moayyer, Mohammad Jafar Molaei, A. Babaei
{"title":"CoFe2O4/Ni纳米复合材料的磁性和光催化性能","authors":"V. Mahdikhah, A. Ataie, H. Akbari Moayyer, Mohammad Jafar Molaei, A. Babaei","doi":"10.1007/s10832-021-00271-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this research, hard/soft CoFe<sub>2</sub>O<sub>4</sub>/Ni magnetic nanocomposite samples with different concentrations of Ni were successfully produced by a two-step mechanical alloying route. Single-phase CoFe<sub>2</sub>O<sub>4</sub> (CFO), having the average particle size of 35 nm, saturation magnetization of 71 emu/g, and bandgap energy of 2.6 eV was synthesized via the mechanical alloying method. A mixture of as-synthesized CFO and 10, 30 and, 50 wt. % Ni powder has been severely milled to prepare magnetic nanocomposite samples. The effects of different Ni content on the characteristics of the nanocomposite samples have been investigated. FESEM images showed that the ductile nickel powder particles get flattened after 1 h milling, whereas the brittle CFO particles get fragmented by increasing milling time to 10 h. The single-phase-like hysteresis loop, and the switching field distribution curves alongside the simultaneous enhancements of maximum energy product and remanence reflect the presence of exchange spring phenomenon in the nanocomposite samples. Also, the diffuse reflectance spectroscopy (DRS) analysis evidence the reduction of bandgap energy for 10 wt.% Ni containing nanocomposite sample from 2.44 to 2.15 eV on increasing the milling time from 1 to 10 h. Under the optimum photocatalyst operating conditions, the CFO/10 wt% Ni sample exhibited the highest photocatalytic activity of 93.6% for methylene blue (MB) degradation in comparison with the cobalt ferrite sample. Eventually, the detailed kinetic and mechanism to describe the improvement of the photocatalytic performance were suggested.</p><h3>Graphical abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"48 1","pages":"51 - 66"},"PeriodicalIF":1.7000,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10832-021-00271-6.pdf","citationCount":"7","resultStr":"{\"title\":\"Magnetic and photocatalytic properties of CoFe2O4/Ni nanocomposites\",\"authors\":\"V. Mahdikhah, A. Ataie, H. Akbari Moayyer, Mohammad Jafar Molaei, A. Babaei\",\"doi\":\"10.1007/s10832-021-00271-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this research, hard/soft CoFe<sub>2</sub>O<sub>4</sub>/Ni magnetic nanocomposite samples with different concentrations of Ni were successfully produced by a two-step mechanical alloying route. Single-phase CoFe<sub>2</sub>O<sub>4</sub> (CFO), having the average particle size of 35 nm, saturation magnetization of 71 emu/g, and bandgap energy of 2.6 eV was synthesized via the mechanical alloying method. A mixture of as-synthesized CFO and 10, 30 and, 50 wt. % Ni powder has been severely milled to prepare magnetic nanocomposite samples. The effects of different Ni content on the characteristics of the nanocomposite samples have been investigated. FESEM images showed that the ductile nickel powder particles get flattened after 1 h milling, whereas the brittle CFO particles get fragmented by increasing milling time to 10 h. The single-phase-like hysteresis loop, and the switching field distribution curves alongside the simultaneous enhancements of maximum energy product and remanence reflect the presence of exchange spring phenomenon in the nanocomposite samples. Also, the diffuse reflectance spectroscopy (DRS) analysis evidence the reduction of bandgap energy for 10 wt.% Ni containing nanocomposite sample from 2.44 to 2.15 eV on increasing the milling time from 1 to 10 h. Under the optimum photocatalyst operating conditions, the CFO/10 wt% Ni sample exhibited the highest photocatalytic activity of 93.6% for methylene blue (MB) degradation in comparison with the cobalt ferrite sample. Eventually, the detailed kinetic and mechanism to describe the improvement of the photocatalytic performance were suggested.</p><h3>Graphical abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":625,\"journal\":{\"name\":\"Journal of Electroceramics\",\"volume\":\"48 1\",\"pages\":\"51 - 66\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10832-021-00271-6.pdf\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electroceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10832-021-00271-6\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10832-021-00271-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Magnetic and photocatalytic properties of CoFe2O4/Ni nanocomposites
In this research, hard/soft CoFe2O4/Ni magnetic nanocomposite samples with different concentrations of Ni were successfully produced by a two-step mechanical alloying route. Single-phase CoFe2O4 (CFO), having the average particle size of 35 nm, saturation magnetization of 71 emu/g, and bandgap energy of 2.6 eV was synthesized via the mechanical alloying method. A mixture of as-synthesized CFO and 10, 30 and, 50 wt. % Ni powder has been severely milled to prepare magnetic nanocomposite samples. The effects of different Ni content on the characteristics of the nanocomposite samples have been investigated. FESEM images showed that the ductile nickel powder particles get flattened after 1 h milling, whereas the brittle CFO particles get fragmented by increasing milling time to 10 h. The single-phase-like hysteresis loop, and the switching field distribution curves alongside the simultaneous enhancements of maximum energy product and remanence reflect the presence of exchange spring phenomenon in the nanocomposite samples. Also, the diffuse reflectance spectroscopy (DRS) analysis evidence the reduction of bandgap energy for 10 wt.% Ni containing nanocomposite sample from 2.44 to 2.15 eV on increasing the milling time from 1 to 10 h. Under the optimum photocatalyst operating conditions, the CFO/10 wt% Ni sample exhibited the highest photocatalytic activity of 93.6% for methylene blue (MB) degradation in comparison with the cobalt ferrite sample. Eventually, the detailed kinetic and mechanism to describe the improvement of the photocatalytic performance were suggested.
期刊介绍:
While ceramics have traditionally been admired for their mechanical, chemical and thermal stability, their unique electrical, optical and magnetic properties have become of increasing importance in many key technologies including communications, energy conversion and storage, electronics and automation. Electroceramics benefit greatly from their versatility in properties including:
-insulating to metallic and fast ion conductivity
-piezo-, ferro-, and pyro-electricity
-electro- and nonlinear optical properties
-feromagnetism.
When combined with thermal, mechanical, and chemical stability, these properties often render them the materials of choice.
The Journal of Electroceramics is dedicated to providing a forum of discussion cutting across issues in electrical, optical, and magnetic ceramics. Driven by the need for miniaturization, cost, and enhanced functionality, the field of electroceramics is growing rapidly in many new directions. The Journal encourages discussions of resultant trends concerning silicon-electroceramic integration, nanotechnology, ceramic-polymer composites, grain boundary and defect engineering, etc.