牛肝脏脉冲微波消融过程中微波热声信号的演变

IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2023-03-02 DOI:10.1109/JERM.2023.3268553
Audrey L. Evans;Ruixi L. Liu;Chu Ma;Susan C. Hagness
{"title":"牛肝脏脉冲微波消融过程中微波热声信号的演变","authors":"Audrey L. Evans;Ruixi L. Liu;Chu Ma;Susan C. Hagness","doi":"10.1109/JERM.2023.3268553","DOIUrl":null,"url":null,"abstract":"The temperature dependence of microwave-induced thermoacoustic signals generated in tissue may be exploited to monitor microwave ablation in real-time. We present an experimental study investigating the evolution of microwave-induced thermoacoustic signals that are generated within an ablation zone during microwave ablation in bovine liver tissue. An X-band interstitial coaxial ablation antenna is used to simultaneously heat liver tissue to temperatures up to 90 \n<inline-formula><tex-math>$^{\\circ }$</tex-math></inline-formula>\nC and excite thermoacoustic signals via the absorption of pulsed microwave energy. Thermoacoustic signals are detected using a single-element ultrasound transducer located at the surface of the tissue. Both fresh and boiled liver tissue samples are used in experiments to decouple the influence of temperature and tissue coagulation on thermoacoustic signal characteristics. We identify two thermoacoustic signal characteristics of interest: arrival time of the pulse at the ultrasound receiver and the energy in the pulse. We find that the time difference of arrival over the course of microwave ablation grows in magnitude due to temperature-dependent speed of sound and tissue shrinkage. Thermoacoustic signal energy generally increases throughout microwave ablation, implying an increasing temperature-dependent thermal expansion coefficient of liver tissue. Of the two characteristics, time difference of arrival shows the most promise as a trackable feature for monitoring microwave ablation in real time.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Evolution of Microwave-Induced Thermoacoustic Signals Generated During Pulsed Microwave Ablation in Bovine Liver\",\"authors\":\"Audrey L. Evans;Ruixi L. Liu;Chu Ma;Susan C. Hagness\",\"doi\":\"10.1109/JERM.2023.3268553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The temperature dependence of microwave-induced thermoacoustic signals generated in tissue may be exploited to monitor microwave ablation in real-time. We present an experimental study investigating the evolution of microwave-induced thermoacoustic signals that are generated within an ablation zone during microwave ablation in bovine liver tissue. An X-band interstitial coaxial ablation antenna is used to simultaneously heat liver tissue to temperatures up to 90 \\n<inline-formula><tex-math>$^{\\\\circ }$</tex-math></inline-formula>\\nC and excite thermoacoustic signals via the absorption of pulsed microwave energy. Thermoacoustic signals are detected using a single-element ultrasound transducer located at the surface of the tissue. Both fresh and boiled liver tissue samples are used in experiments to decouple the influence of temperature and tissue coagulation on thermoacoustic signal characteristics. We identify two thermoacoustic signal characteristics of interest: arrival time of the pulse at the ultrasound receiver and the energy in the pulse. We find that the time difference of arrival over the course of microwave ablation grows in magnitude due to temperature-dependent speed of sound and tissue shrinkage. Thermoacoustic signal energy generally increases throughout microwave ablation, implying an increasing temperature-dependent thermal expansion coefficient of liver tissue. Of the two characteristics, time difference of arrival shows the most promise as a trackable feature for monitoring microwave ablation in real time.\",\"PeriodicalId\":29955,\"journal\":{\"name\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10114453/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10114453/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在组织中产生的微波诱导热声信号的温度依赖性可用于实时监测微波消融。我们进行了一项实验研究,研究了牛肝组织微波消融过程中消融区内产生的微波诱导热声信号的演变。X波段间质同轴消融天线用于同时将肝组织加热至高达90°C的温度,并通过吸收脉冲微波能量激发热声信号。使用位于组织表面的单元件超声换能器来检测热声信号。实验中使用新鲜和煮沸的肝组织样本来解耦温度和组织凝固对热声信号特性的影响。我们确定了两个感兴趣的热声信号特征:脉冲到达超声接收器的时间和脉冲中的能量。我们发现,由于温度相关的声速和组织收缩,微波消融过程中到达的时间差在幅度上增加。热声信号能量通常在整个微波消融过程中增加,这意味着肝组织的温度依赖性热膨胀系数增加。在这两个特征中,到达时间差作为实时监测微波消融的可跟踪特征最有希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Evolution of Microwave-Induced Thermoacoustic Signals Generated During Pulsed Microwave Ablation in Bovine Liver
The temperature dependence of microwave-induced thermoacoustic signals generated in tissue may be exploited to monitor microwave ablation in real-time. We present an experimental study investigating the evolution of microwave-induced thermoacoustic signals that are generated within an ablation zone during microwave ablation in bovine liver tissue. An X-band interstitial coaxial ablation antenna is used to simultaneously heat liver tissue to temperatures up to 90 $^{\circ }$ C and excite thermoacoustic signals via the absorption of pulsed microwave energy. Thermoacoustic signals are detected using a single-element ultrasound transducer located at the surface of the tissue. Both fresh and boiled liver tissue samples are used in experiments to decouple the influence of temperature and tissue coagulation on thermoacoustic signal characteristics. We identify two thermoacoustic signal characteristics of interest: arrival time of the pulse at the ultrasound receiver and the energy in the pulse. We find that the time difference of arrival over the course of microwave ablation grows in magnitude due to temperature-dependent speed of sound and tissue shrinkage. Thermoacoustic signal energy generally increases throughout microwave ablation, implying an increasing temperature-dependent thermal expansion coefficient of liver tissue. Of the two characteristics, time difference of arrival shows the most promise as a trackable feature for monitoring microwave ablation in real time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.40%
发文量
58
期刊最新文献
Front Cover Table of Contents IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology About this Journal IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology Publication Information Models of Melanoma Growth for Assessment of Microwave-Based Diagnostic Tools
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1