Qingfeng Yao;Linghan Meng;Qifeng Zhang;Jing Zhao;Joni Pajarinen;Xiaohui Wang;Zhibin Li;Cong Wang
{"title":"动态适应环境变化的两栖四足机器人基于学习的推进控制","authors":"Qingfeng Yao;Linghan Meng;Qifeng Zhang;Jing Zhao;Joni Pajarinen;Xiaohui Wang;Zhibin Li;Cong Wang","doi":"10.1109/LRA.2023.3323893","DOIUrl":null,"url":null,"abstract":"This letter proposes a learning-based adaptive propulsion control (APC) method for a quadruped robot integrated with thrusters in amphibious environments, allowing it to move efficiently in water while maintaining its ground locomotion capabilities. We designed the specific reinforcement learning method to train the neural network to perform the vector propulsion control. Our approach coordinates the legs and propeller, enabling the robot to achieve speed and trajectory tracking tasks in the presence of actuator failures and unknown disturbances. Our simulated validations of the robot in water demonstrate the effectiveness of the trained neural network to predict the disturbances and actuator failures based on historical information, showing that the framework is adaptable to changing environments and is suitable for use in dynamically changing situations. Our proposed approach is suited to the hardware augmentation of quadruped robots to create avenues in the field of amphibious robotics and expand the use of quadruped robots in various applications.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"8 12","pages":"7889-7896"},"PeriodicalIF":4.6000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning-Based Propulsion Control for Amphibious Quadruped Robots With Dynamic Adaptation to Changing Environment\",\"authors\":\"Qingfeng Yao;Linghan Meng;Qifeng Zhang;Jing Zhao;Joni Pajarinen;Xiaohui Wang;Zhibin Li;Cong Wang\",\"doi\":\"10.1109/LRA.2023.3323893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter proposes a learning-based adaptive propulsion control (APC) method for a quadruped robot integrated with thrusters in amphibious environments, allowing it to move efficiently in water while maintaining its ground locomotion capabilities. We designed the specific reinforcement learning method to train the neural network to perform the vector propulsion control. Our approach coordinates the legs and propeller, enabling the robot to achieve speed and trajectory tracking tasks in the presence of actuator failures and unknown disturbances. Our simulated validations of the robot in water demonstrate the effectiveness of the trained neural network to predict the disturbances and actuator failures based on historical information, showing that the framework is adaptable to changing environments and is suitable for use in dynamically changing situations. Our proposed approach is suited to the hardware augmentation of quadruped robots to create avenues in the field of amphibious robotics and expand the use of quadruped robots in various applications.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"8 12\",\"pages\":\"7889-7896\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10278475/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10278475/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Learning-Based Propulsion Control for Amphibious Quadruped Robots With Dynamic Adaptation to Changing Environment
This letter proposes a learning-based adaptive propulsion control (APC) method for a quadruped robot integrated with thrusters in amphibious environments, allowing it to move efficiently in water while maintaining its ground locomotion capabilities. We designed the specific reinforcement learning method to train the neural network to perform the vector propulsion control. Our approach coordinates the legs and propeller, enabling the robot to achieve speed and trajectory tracking tasks in the presence of actuator failures and unknown disturbances. Our simulated validations of the robot in water demonstrate the effectiveness of the trained neural network to predict the disturbances and actuator failures based on historical information, showing that the framework is adaptable to changing environments and is suitable for use in dynamically changing situations. Our proposed approach is suited to the hardware augmentation of quadruped robots to create avenues in the field of amphibious robotics and expand the use of quadruped robots in various applications.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.