车轮视觉:在可变形地形上使用传感透明车轮进行车轮-地形交互测量和分析

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2023-10-12 DOI:10.1109/LRA.2023.3324291
Chen Yao;Feng Xue;Zhengyin Wang;Ye Yuan;Zheng Zhu;Liang Ding;Zhenzhong Jia
{"title":"车轮视觉:在可变形地形上使用传感透明车轮进行车轮-地形交互测量和分析","authors":"Chen Yao;Feng Xue;Zhengyin Wang;Ye Yuan;Zheng Zhu;Liang Ding;Zhenzhong Jia","doi":"10.1109/LRA.2023.3324291","DOIUrl":null,"url":null,"abstract":"The off-road locomotion of wheeled mobile robots (WMRs) over soft terrains can be quite challenging due to the complicated wheel-terrain interaction (WTI). To avoid unforeseen non-geometric hazards such as excessive sinkage or slippage, it is crucial to oversee these terrain-related uncertainties. However, determining the appropriate sensing principle for WTI and hazard prediction remains an open problem. This letter showcases an onboard sensorized transparent wheel concept (STW) aiming to explicitly characterize the WTI over deformable terrains for rovers. The STW configuration can provide directly in-wheel interaction views, thereby offering in-wheel measurement (IM) of WTI parameters and observations of soil flow simultaneously. Unlike traditional vision-based methods, this in-situ wheel vision can characterize the entire contact geometry distributions, eliminating complicated yet inaccurate model-based stochastic estimations. Consequently, it can achieve robust and real-time (30 Hz) performance even under complex motions. We conduct representative terrain experiments on a single-wheel testbed to verify the performance of our proposed STW system, and showcase its applicability as a terramechanics test tool to remodel WTI mechanics, as seen in \n<uri>https://youtu.be/aYKW1Pp4ENw</uri>\n.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"8 12","pages":"7938-7945"},"PeriodicalIF":4.6000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wheel Vision: Wheel-Terrain Interaction Measurement and Analysis Using a Sensorized Transparent Wheel on Deformable Terrains\",\"authors\":\"Chen Yao;Feng Xue;Zhengyin Wang;Ye Yuan;Zheng Zhu;Liang Ding;Zhenzhong Jia\",\"doi\":\"10.1109/LRA.2023.3324291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The off-road locomotion of wheeled mobile robots (WMRs) over soft terrains can be quite challenging due to the complicated wheel-terrain interaction (WTI). To avoid unforeseen non-geometric hazards such as excessive sinkage or slippage, it is crucial to oversee these terrain-related uncertainties. However, determining the appropriate sensing principle for WTI and hazard prediction remains an open problem. This letter showcases an onboard sensorized transparent wheel concept (STW) aiming to explicitly characterize the WTI over deformable terrains for rovers. The STW configuration can provide directly in-wheel interaction views, thereby offering in-wheel measurement (IM) of WTI parameters and observations of soil flow simultaneously. Unlike traditional vision-based methods, this in-situ wheel vision can characterize the entire contact geometry distributions, eliminating complicated yet inaccurate model-based stochastic estimations. Consequently, it can achieve robust and real-time (30 Hz) performance even under complex motions. We conduct representative terrain experiments on a single-wheel testbed to verify the performance of our proposed STW system, and showcase its applicability as a terramechanics test tool to remodel WTI mechanics, as seen in \\n<uri>https://youtu.be/aYKW1Pp4ENw</uri>\\n.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"8 12\",\"pages\":\"7938-7945\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10283934/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10283934/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

轮式移动机器人(WMR)在松软地形上的越野运动由于复杂的轮地交互(WTI)而具有相当大的挑战性。为了避免不可预见的非几何危险,如过度下沉或滑动,监督这些与地形相关的不确定性至关重要。然而,确定WTI和危险预测的适当传感原理仍然是一个悬而未决的问题。这封信展示了车载传感透明车轮概念(STW),旨在明确表征漫游车在可变形地形上的WTI。STW配置可以直接提供轮内相互作用视图,从而同时提供WTI参数的轮内测量(IM)和土壤流量的观测。与传统的基于视觉的方法不同,这种原位车轮视觉可以表征整个接触几何分布,消除了复杂但不准确的基于模型的随机估计。因此,即使在复杂的运动下,它也可以实现稳健和实时(30Hz)的性能。我们在单轮试验台上进行了具有代表性的地形实验,以验证我们提出的STW系统的性能,并展示其作为重塑WTI力学的地形力学测试工具的适用性,如https://youtu.be/aYKW1Pp4ENw.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wheel Vision: Wheel-Terrain Interaction Measurement and Analysis Using a Sensorized Transparent Wheel on Deformable Terrains
The off-road locomotion of wheeled mobile robots (WMRs) over soft terrains can be quite challenging due to the complicated wheel-terrain interaction (WTI). To avoid unforeseen non-geometric hazards such as excessive sinkage or slippage, it is crucial to oversee these terrain-related uncertainties. However, determining the appropriate sensing principle for WTI and hazard prediction remains an open problem. This letter showcases an onboard sensorized transparent wheel concept (STW) aiming to explicitly characterize the WTI over deformable terrains for rovers. The STW configuration can provide directly in-wheel interaction views, thereby offering in-wheel measurement (IM) of WTI parameters and observations of soil flow simultaneously. Unlike traditional vision-based methods, this in-situ wheel vision can characterize the entire contact geometry distributions, eliminating complicated yet inaccurate model-based stochastic estimations. Consequently, it can achieve robust and real-time (30 Hz) performance even under complex motions. We conduct representative terrain experiments on a single-wheel testbed to verify the performance of our proposed STW system, and showcase its applicability as a terramechanics test tool to remodel WTI mechanics, as seen in https://youtu.be/aYKW1Pp4ENw .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Integrated Grasping Controller Leveraging Optical Proximity Sensors for Simultaneous Contact, Impact Reduction, and Force Control Single-Motor-Driven (4 + 2)-Fingered Robotic Gripper Capable of Expanding the Workable Space in the Extremely Confined Environment CMGFA: A BEV Segmentation Model Based on Cross-Modal Group-Mix Attention Feature Aggregator Visual-Inertial Localization Leveraging Skylight Polarization Pattern Constraints Demonstration Data-Driven Parameter Adjustment for Trajectory Planning in Highly Constrained Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1