异构时变时滞下的分布式随时可行资源分配

Mohammadreza Doostmohammadian;Alireza Aghasi;Apostolos I. Rikos;Andreas Grammenos;Evangelia Kalyvianaki;Christoforos N. Hadjicostis;Karl H. Johansson;Themistoklis Charalambous
{"title":"异构时变时滞下的分布式随时可行资源分配","authors":"Mohammadreza Doostmohammadian;Alireza Aghasi;Apostolos I. Rikos;Andreas Grammenos;Evangelia Kalyvianaki;Christoforos N. Hadjicostis;Karl H. Johansson;Themistoklis Charalambous","doi":"10.1109/OJCSYS.2022.3210453","DOIUrl":null,"url":null,"abstract":"This paper considers distributed allocation strategies, formulated as a distributed sum-preserving (fixed-sum) allocation of resources over a multi-agent network in the presence of heterogeneous arbitrary time-varying delays. We propose a double time-scale scenario for unknown delays and a faster single time-scale scenario for known delays. Further, the links among the nodes are considered subject to certain nonlinearities (e.g, quantization and saturation/clipping). We discuss different models for nonlinearities and how they may affect the convergence, sum-preserving feasibility constraint, and solution optimality over general weight-balanced uniformly strongly connected networks and, further, time-delayed undirected networks. Our proposed scheme works in a variety of applications with general non-quadratic strongly-convex smooth objective functions. The non-quadratic part, for example, can be due to additive convex penalty or barrier functions to address the local box constraints. The network can change over time, is not necessarily connected at all times, but is only assumed to be uniformly-connected. The novelty of this work is to address all-time feasible Laplacian gradient solutions in presence of nonlinearities, switching digraph topology (not necessarily all-time connected), and heterogeneous time-varying delays.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"1 ","pages":"255-267"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9552933/9683993/09904851.pdf","citationCount":"6","resultStr":"{\"title\":\"Distributed Anytime-Feasible Resource Allocation Subject to Heterogeneous Time-Varying Delays\",\"authors\":\"Mohammadreza Doostmohammadian;Alireza Aghasi;Apostolos I. Rikos;Andreas Grammenos;Evangelia Kalyvianaki;Christoforos N. Hadjicostis;Karl H. Johansson;Themistoklis Charalambous\",\"doi\":\"10.1109/OJCSYS.2022.3210453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers distributed allocation strategies, formulated as a distributed sum-preserving (fixed-sum) allocation of resources over a multi-agent network in the presence of heterogeneous arbitrary time-varying delays. We propose a double time-scale scenario for unknown delays and a faster single time-scale scenario for known delays. Further, the links among the nodes are considered subject to certain nonlinearities (e.g, quantization and saturation/clipping). We discuss different models for nonlinearities and how they may affect the convergence, sum-preserving feasibility constraint, and solution optimality over general weight-balanced uniformly strongly connected networks and, further, time-delayed undirected networks. Our proposed scheme works in a variety of applications with general non-quadratic strongly-convex smooth objective functions. The non-quadratic part, for example, can be due to additive convex penalty or barrier functions to address the local box constraints. The network can change over time, is not necessarily connected at all times, but is only assumed to be uniformly-connected. The novelty of this work is to address all-time feasible Laplacian gradient solutions in presence of nonlinearities, switching digraph topology (not necessarily all-time connected), and heterogeneous time-varying delays.\",\"PeriodicalId\":73299,\"journal\":{\"name\":\"IEEE open journal of control systems\",\"volume\":\"1 \",\"pages\":\"255-267\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/9552933/9683993/09904851.pdf\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of control systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9904851/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9904851/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文考虑了分布式分配策略,该策略被表述为在存在异构任意时变延迟的情况下,在多智能体网络上对资源进行分布式保和(固定和)分配。我们提出了未知延迟的双时间尺度场景和已知延迟的更快单时间尺度场景。此外,节点之间的链路被认为受到某些非线性的影响(例如,量化和饱和/削波)。我们讨论了不同的非线性模型,以及它们如何影响一般权重平衡一致强连通网络以及时滞无向网络的收敛性、保和可行性约束和解的最优性。我们提出的方案适用于一般非二次强凸光滑目标函数的各种应用。例如,非二次部分可能是由于附加凸惩罚或障碍函数来解决局部盒约束。网络可以随着时间的推移而变化,不一定总是连接的,但只假设是一致连接的。这项工作的新颖之处在于,在存在非线性、切换有向图拓扑(不一定是全时连接的)和异构时变延迟的情况下,解决了始终可行的拉普拉斯梯度解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributed Anytime-Feasible Resource Allocation Subject to Heterogeneous Time-Varying Delays
This paper considers distributed allocation strategies, formulated as a distributed sum-preserving (fixed-sum) allocation of resources over a multi-agent network in the presence of heterogeneous arbitrary time-varying delays. We propose a double time-scale scenario for unknown delays and a faster single time-scale scenario for known delays. Further, the links among the nodes are considered subject to certain nonlinearities (e.g, quantization and saturation/clipping). We discuss different models for nonlinearities and how they may affect the convergence, sum-preserving feasibility constraint, and solution optimality over general weight-balanced uniformly strongly connected networks and, further, time-delayed undirected networks. Our proposed scheme works in a variety of applications with general non-quadratic strongly-convex smooth objective functions. The non-quadratic part, for example, can be due to additive convex penalty or barrier functions to address the local box constraints. The network can change over time, is not necessarily connected at all times, but is only assumed to be uniformly-connected. The novelty of this work is to address all-time feasible Laplacian gradient solutions in presence of nonlinearities, switching digraph topology (not necessarily all-time connected), and heterogeneous time-varying delays.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Erratum to “Learning to Boost the Performance of Stable Nonlinear Systems” Generalizing Robust Control Barrier Functions From a Controller Design Perspective 2024 Index IEEE Open Journal of Control Systems Vol. 3 Front Cover Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1