抗噪声量子功率流

iEnergy Pub Date : 2023-03-01 DOI:10.23919/IEN.2023.0008
Fei Feng;Yi-Fan Zhou;Peng Zhang
{"title":"抗噪声量子功率流","authors":"Fei Feng;Yi-Fan Zhou;Peng Zhang","doi":"10.23919/IEN.2023.0008","DOIUrl":null,"url":null,"abstract":"Quantum power flow (QPF) offers an inspiring direction for overcoming the computation challenge of power flow through quantum computing. However, the practical implementation of existing QPF algorithms in today's noisy-intermediate-scale quantum (NISQ) era remains limited because of their sensitivity to noise. This paper establishes an NISQ-QPF algorithm that enables power flow computation on noisy quantum devices. The main contributions include: (1) a variational quantum circuit (VQC)-based alternating current (AC) power flow formulation, which enables QPF using short-depth quantum circuits; (2) NISQ-compatible QPF solvers based on the variational quantum linear solver (VQLS) and modified fast decoupled power flow; and (3) an error-resilient QPF scheme to relieve the QPF iteration deviations caused by noise; (3) a practical NISQ-QPF framework for implementable and reliable power flow analysis on noisy quantum machines. Extensive simulation tests validate the accuracy and generality of NISQ-QPF for solving practical power flow on IBM's real, noisy quantum computers.","PeriodicalId":100648,"journal":{"name":"iEnergy","volume":"2 1","pages":"63-70"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9732629/10144267/10144277.pdf","citationCount":"0","resultStr":"{\"title\":\"Noise-resilient quantum power flow\",\"authors\":\"Fei Feng;Yi-Fan Zhou;Peng Zhang\",\"doi\":\"10.23919/IEN.2023.0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum power flow (QPF) offers an inspiring direction for overcoming the computation challenge of power flow through quantum computing. However, the practical implementation of existing QPF algorithms in today's noisy-intermediate-scale quantum (NISQ) era remains limited because of their sensitivity to noise. This paper establishes an NISQ-QPF algorithm that enables power flow computation on noisy quantum devices. The main contributions include: (1) a variational quantum circuit (VQC)-based alternating current (AC) power flow formulation, which enables QPF using short-depth quantum circuits; (2) NISQ-compatible QPF solvers based on the variational quantum linear solver (VQLS) and modified fast decoupled power flow; and (3) an error-resilient QPF scheme to relieve the QPF iteration deviations caused by noise; (3) a practical NISQ-QPF framework for implementable and reliable power flow analysis on noisy quantum machines. Extensive simulation tests validate the accuracy and generality of NISQ-QPF for solving practical power flow on IBM's real, noisy quantum computers.\",\"PeriodicalId\":100648,\"journal\":{\"name\":\"iEnergy\",\"volume\":\"2 1\",\"pages\":\"63-70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/9732629/10144267/10144277.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iEnergy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10144277/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iEnergy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10144277/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子功率流(QPF)为通过量子计算克服功率流的计算挑战提供了一个鼓舞人心的方向。然而,在当今噪声中等规模量子(NISQ)时代,现有QPF算法的实际实现仍然有限,因为它们对噪声的敏感性。本文建立了一种NISQ-QPF算法,该算法能够在有噪声的量子器件上进行功率流计算。主要贡献包括:(1)基于变分量子电路(VQC)的交流(AC)功率流公式,该公式使QPF能够使用短深度量子电路;(2) 基于变分量子线性求解器(VQLS)和改进的快速解耦潮流的NISQ兼容QPF求解器;以及(3)一种具有误差弹性的QPF方案,以减轻由噪声引起的QPF迭代偏差;(3) 一个实用的NISQ-QPF框架,用于在有噪声的量子机器上进行可实现和可靠的功率流分析。大量的模拟测试验证了NISQ-QPF在IBM真实的、有噪声的量子计算机上求解实际功率流的准确性和通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Noise-resilient quantum power flow
Quantum power flow (QPF) offers an inspiring direction for overcoming the computation challenge of power flow through quantum computing. However, the practical implementation of existing QPF algorithms in today's noisy-intermediate-scale quantum (NISQ) era remains limited because of their sensitivity to noise. This paper establishes an NISQ-QPF algorithm that enables power flow computation on noisy quantum devices. The main contributions include: (1) a variational quantum circuit (VQC)-based alternating current (AC) power flow formulation, which enables QPF using short-depth quantum circuits; (2) NISQ-compatible QPF solvers based on the variational quantum linear solver (VQLS) and modified fast decoupled power flow; and (3) an error-resilient QPF scheme to relieve the QPF iteration deviations caused by noise; (3) a practical NISQ-QPF framework for implementable and reliable power flow analysis on noisy quantum machines. Extensive simulation tests validate the accuracy and generality of NISQ-QPF for solving practical power flow on IBM's real, noisy quantum computers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contents Front Cover Methods of Suppressing Ion Migration in n-i-p Perovskite Solar Cells Artificial Intelligence Techniques for Stability Analysis in Modern Power Systems Intelligent Adjustment for Power System Operation Mode Based on Deep Reinforcement Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1