{"title":"抗噪声量子功率流","authors":"Fei Feng;Yi-Fan Zhou;Peng Zhang","doi":"10.23919/IEN.2023.0008","DOIUrl":null,"url":null,"abstract":"Quantum power flow (QPF) offers an inspiring direction for overcoming the computation challenge of power flow through quantum computing. However, the practical implementation of existing QPF algorithms in today's noisy-intermediate-scale quantum (NISQ) era remains limited because of their sensitivity to noise. This paper establishes an NISQ-QPF algorithm that enables power flow computation on noisy quantum devices. The main contributions include: (1) a variational quantum circuit (VQC)-based alternating current (AC) power flow formulation, which enables QPF using short-depth quantum circuits; (2) NISQ-compatible QPF solvers based on the variational quantum linear solver (VQLS) and modified fast decoupled power flow; and (3) an error-resilient QPF scheme to relieve the QPF iteration deviations caused by noise; (3) a practical NISQ-QPF framework for implementable and reliable power flow analysis on noisy quantum machines. Extensive simulation tests validate the accuracy and generality of NISQ-QPF for solving practical power flow on IBM's real, noisy quantum computers.","PeriodicalId":100648,"journal":{"name":"iEnergy","volume":"2 1","pages":"63-70"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9732629/10144267/10144277.pdf","citationCount":"0","resultStr":"{\"title\":\"Noise-resilient quantum power flow\",\"authors\":\"Fei Feng;Yi-Fan Zhou;Peng Zhang\",\"doi\":\"10.23919/IEN.2023.0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum power flow (QPF) offers an inspiring direction for overcoming the computation challenge of power flow through quantum computing. However, the practical implementation of existing QPF algorithms in today's noisy-intermediate-scale quantum (NISQ) era remains limited because of their sensitivity to noise. This paper establishes an NISQ-QPF algorithm that enables power flow computation on noisy quantum devices. The main contributions include: (1) a variational quantum circuit (VQC)-based alternating current (AC) power flow formulation, which enables QPF using short-depth quantum circuits; (2) NISQ-compatible QPF solvers based on the variational quantum linear solver (VQLS) and modified fast decoupled power flow; and (3) an error-resilient QPF scheme to relieve the QPF iteration deviations caused by noise; (3) a practical NISQ-QPF framework for implementable and reliable power flow analysis on noisy quantum machines. Extensive simulation tests validate the accuracy and generality of NISQ-QPF for solving practical power flow on IBM's real, noisy quantum computers.\",\"PeriodicalId\":100648,\"journal\":{\"name\":\"iEnergy\",\"volume\":\"2 1\",\"pages\":\"63-70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/9732629/10144267/10144277.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iEnergy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10144277/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iEnergy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10144277/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantum power flow (QPF) offers an inspiring direction for overcoming the computation challenge of power flow through quantum computing. However, the practical implementation of existing QPF algorithms in today's noisy-intermediate-scale quantum (NISQ) era remains limited because of their sensitivity to noise. This paper establishes an NISQ-QPF algorithm that enables power flow computation on noisy quantum devices. The main contributions include: (1) a variational quantum circuit (VQC)-based alternating current (AC) power flow formulation, which enables QPF using short-depth quantum circuits; (2) NISQ-compatible QPF solvers based on the variational quantum linear solver (VQLS) and modified fast decoupled power flow; and (3) an error-resilient QPF scheme to relieve the QPF iteration deviations caused by noise; (3) a practical NISQ-QPF framework for implementable and reliable power flow analysis on noisy quantum machines. Extensive simulation tests validate the accuracy and generality of NISQ-QPF for solving practical power flow on IBM's real, noisy quantum computers.