世界上第一个在当今嘈杂的量子计算机上运行的实用功率流算法

iEnergy Pub Date : 2023-03-01 DOI:10.23919/IEN.2023.0009
Jinliang He
{"title":"世界上第一个在当今嘈杂的量子计算机上运行的实用功率流算法","authors":"Jinliang He","doi":"10.23919/IEN.2023.0009","DOIUrl":null,"url":null,"abstract":"Power flow is an indispensable foundation for power system analytics. Under the deep penetration of renewables, modern power system analytics often becomes intractable because it needs to run an enormous amount of power flow analyses to quantify the impact of uncertainties. Unlike classical power flow methods that scale polynomially with the system size, quantum computing enables using logarithmically-scaled number of qubits to solve linear equations in power flow analysis. Thus, quantum power flow (QPF) provides a promising direction to make today's intractable power system analytics tractable. However, a major obstacle to the development of a practical quantum power flow algorithm lies in the fact that today's mainstream quantum computers are still noisy-intermediate-scale quantum (NISQ) devices whose capability is restricted by the limited number of qubits and considerable noises. To bridge this gap, Stony Brook University establishes a variational quantum power flow that allows for practical and noise-resilient power flow analysis on today's NISQ devices.","PeriodicalId":100648,"journal":{"name":"iEnergy","volume":"2 1","pages":"8-8"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9732629/10144267/10144271.pdf","citationCount":"0","resultStr":"{\"title\":\"World's first practical power flow algorithm operating on today's noisy quantum computers\",\"authors\":\"Jinliang He\",\"doi\":\"10.23919/IEN.2023.0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power flow is an indispensable foundation for power system analytics. Under the deep penetration of renewables, modern power system analytics often becomes intractable because it needs to run an enormous amount of power flow analyses to quantify the impact of uncertainties. Unlike classical power flow methods that scale polynomially with the system size, quantum computing enables using logarithmically-scaled number of qubits to solve linear equations in power flow analysis. Thus, quantum power flow (QPF) provides a promising direction to make today's intractable power system analytics tractable. However, a major obstacle to the development of a practical quantum power flow algorithm lies in the fact that today's mainstream quantum computers are still noisy-intermediate-scale quantum (NISQ) devices whose capability is restricted by the limited number of qubits and considerable noises. To bridge this gap, Stony Brook University establishes a variational quantum power flow that allows for practical and noise-resilient power flow analysis on today's NISQ devices.\",\"PeriodicalId\":100648,\"journal\":{\"name\":\"iEnergy\",\"volume\":\"2 1\",\"pages\":\"8-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/9732629/10144267/10144271.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iEnergy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10144271/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iEnergy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10144271/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

潮流是电力系统分析不可或缺的基础。在可再生能源的深度渗透下,现代电力系统分析往往变得棘手,因为它需要进行大量的潮流分析来量化不确定性的影响。与经典的功率流方法不同,量子计算能够使用对数缩放的量子位数量来求解功率流分析中的线性方程。因此,量子功率流(QPF)为当今棘手的电力系统分析提供了一个很有前途的方向。然而,开发实用量子功率流算法的一个主要障碍在于,今天的主流量子计算机仍然是噪声中等规模的量子(NISQ)设备,其能力受到数量有限的量子位和相当大的噪声的限制。为了弥补这一差距,石溪大学建立了一种变分量子功率流,可以对当今的NISQ设备进行实用和抗噪声的功率流分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
World's first practical power flow algorithm operating on today's noisy quantum computers
Power flow is an indispensable foundation for power system analytics. Under the deep penetration of renewables, modern power system analytics often becomes intractable because it needs to run an enormous amount of power flow analyses to quantify the impact of uncertainties. Unlike classical power flow methods that scale polynomially with the system size, quantum computing enables using logarithmically-scaled number of qubits to solve linear equations in power flow analysis. Thus, quantum power flow (QPF) provides a promising direction to make today's intractable power system analytics tractable. However, a major obstacle to the development of a practical quantum power flow algorithm lies in the fact that today's mainstream quantum computers are still noisy-intermediate-scale quantum (NISQ) devices whose capability is restricted by the limited number of qubits and considerable noises. To bridge this gap, Stony Brook University establishes a variational quantum power flow that allows for practical and noise-resilient power flow analysis on today's NISQ devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contents Front Cover Methods of Suppressing Ion Migration in n-i-p Perovskite Solar Cells Artificial Intelligence Techniques for Stability Analysis in Modern Power Systems Intelligent Adjustment for Power System Operation Mode Based on Deep Reinforcement Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1