大型电力系统暂态稳定分析综述

IF 6.9 2区 工程技术 Q2 ENERGY & FUELS CSEE Journal of Power and Energy Systems Pub Date : 2023-04-20 DOI:10.17775/CSEEJPES.2022.07110
Qing-Hua Wu;Yuqing Lin;Chao Hong;Yinsheng Su;Tianhao Wen;Yang Liu
{"title":"大型电力系统暂态稳定分析综述","authors":"Qing-Hua Wu;Yuqing Lin;Chao Hong;Yinsheng Su;Tianhao Wen;Yang Liu","doi":"10.17775/CSEEJPES.2022.07110","DOIUrl":null,"url":null,"abstract":"Transient stability analysis is a key problem in power system operation and planning. This paper aims at giving a comprehensive review on the modeling ideas and analysis methods for transient stability of large-scale power systems. For model construction, the general modeling of traditional power systems and special modeling for renewable generations and high-voltage direct-current transmissions are introduced. For transient stability analysis, Lyapunov based methods and non-Lyapunov based methods are thoroughly reviewed. In Lyapunov based methods, we focus on the energy function method, the sum-of-squares based method and decentralized stability analysis methods. Meanwhile, in non-Lyapunov based methods, the time-domain simulation, extended equal-area criterion and data-driven based methods are considered. The basic working principles, features and recent research progresses of all the above-mentioned methods are described in detail. In particular, their performances on several aspects, such as computational speed, conservativeness of stability region estimation or stability margin calculation, and adaptability to various types of system models, are mentioned. Finally, a brief discussion of potential directions for future research on transient stability analysis of large-scale power systems is included.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"9 4","pages":"1284-1300"},"PeriodicalIF":6.9000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/7054730/10213441/10106217.pdf","citationCount":"2","resultStr":"{\"title\":\"Transient Stability Analysis of Large-scale Power Systems: A Survey\",\"authors\":\"Qing-Hua Wu;Yuqing Lin;Chao Hong;Yinsheng Su;Tianhao Wen;Yang Liu\",\"doi\":\"10.17775/CSEEJPES.2022.07110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transient stability analysis is a key problem in power system operation and planning. This paper aims at giving a comprehensive review on the modeling ideas and analysis methods for transient stability of large-scale power systems. For model construction, the general modeling of traditional power systems and special modeling for renewable generations and high-voltage direct-current transmissions are introduced. For transient stability analysis, Lyapunov based methods and non-Lyapunov based methods are thoroughly reviewed. In Lyapunov based methods, we focus on the energy function method, the sum-of-squares based method and decentralized stability analysis methods. Meanwhile, in non-Lyapunov based methods, the time-domain simulation, extended equal-area criterion and data-driven based methods are considered. The basic working principles, features and recent research progresses of all the above-mentioned methods are described in detail. In particular, their performances on several aspects, such as computational speed, conservativeness of stability region estimation or stability margin calculation, and adaptability to various types of system models, are mentioned. Finally, a brief discussion of potential directions for future research on transient stability analysis of large-scale power systems is included.\",\"PeriodicalId\":10729,\"journal\":{\"name\":\"CSEE Journal of Power and Energy Systems\",\"volume\":\"9 4\",\"pages\":\"1284-1300\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/7054730/10213441/10106217.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CSEE Journal of Power and Energy Systems\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10106217/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSEE Journal of Power and Energy Systems","FirstCategoryId":"1087","ListUrlMain":"https://ieeexplore.ieee.org/document/10106217/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 2

摘要

暂态稳定分析是电力系统运行和规划中的一个关键问题。本文旨在对大型电力系统暂态稳定的建模思想和分析方法进行全面综述。在模型构建方面,介绍了传统电力系统的通用建模以及可再生能源发电和高压直流输电的特殊建模。对于瞬态稳定性分析,全面回顾了基于李雅普诺夫的方法和非李雅普ov的方法。在基于李雅普诺夫的方法中,我们重点研究了能量函数法、基于平方和的方法和分散稳定性分析方法。同时,在非李雅普诺夫方法中,考虑了时域仿真、扩展等面积准则和基于数据驱动的方法。详细介绍了上述方法的基本工作原理、特点和最新研究进展。特别提到了它们在计算速度、稳定区域估计或稳定裕度计算的保守性以及对各种类型系统模型的适应性等几个方面的性能。最后,简要讨论了未来大规模电力系统暂态稳定分析研究的潜在方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transient Stability Analysis of Large-scale Power Systems: A Survey
Transient stability analysis is a key problem in power system operation and planning. This paper aims at giving a comprehensive review on the modeling ideas and analysis methods for transient stability of large-scale power systems. For model construction, the general modeling of traditional power systems and special modeling for renewable generations and high-voltage direct-current transmissions are introduced. For transient stability analysis, Lyapunov based methods and non-Lyapunov based methods are thoroughly reviewed. In Lyapunov based methods, we focus on the energy function method, the sum-of-squares based method and decentralized stability analysis methods. Meanwhile, in non-Lyapunov based methods, the time-domain simulation, extended equal-area criterion and data-driven based methods are considered. The basic working principles, features and recent research progresses of all the above-mentioned methods are described in detail. In particular, their performances on several aspects, such as computational speed, conservativeness of stability region estimation or stability margin calculation, and adaptability to various types of system models, are mentioned. Finally, a brief discussion of potential directions for future research on transient stability analysis of large-scale power systems is included.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.80
自引率
12.70%
发文量
389
审稿时长
26 weeks
期刊介绍: The CSEE Journal of Power and Energy Systems (JPES) is an international bimonthly journal published by the Chinese Society for Electrical Engineering (CSEE) in collaboration with CEPRI (China Electric Power Research Institute) and IEEE (The Institute of Electrical and Electronics Engineers) Inc. Indexed by SCI, Scopus, INSPEC, CSAD (Chinese Science Abstracts Database), DOAJ, and ProQuest, it serves as a platform for reporting cutting-edge theories, methods, technologies, and applications shaping the development of power systems in energy transition. The journal offers authors an international platform to enhance the reach and impact of their contributions.
期刊最新文献
Transient Voltage Support Strategy of Grid-Forming Medium Voltage Photovoltaic Converter in the LCC-HVDC System Front Cover Contents PFL-DSSE: A Personalized Federated Learning Approach for Distribution System State Estimation Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1