用于电机驱动控制和监测的机器学习:进展和趋势

IF 7.9 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of Industry Applications Pub Date : 2023-06-09 DOI:10.1109/OJIA.2023.3284717
Shen Zhang;Oliver Wallscheid;Mario Porrmann
{"title":"用于电机驱动控制和监测的机器学习:进展和趋势","authors":"Shen Zhang;Oliver Wallscheid;Mario Porrmann","doi":"10.1109/OJIA.2023.3284717","DOIUrl":null,"url":null,"abstract":"This review article systematically summarizes the existing literature on utilizing machine learning (ML) techniques for the control and monitoring of electric machine drives. It is anticipated that with the rapid progress in learning algorithms and specialized embedded hardware platforms, ML-based data-driven approaches will become standard tools for the automated high-performance control and monitoring of electric drives. In addition, this article also provides some outlook toward promoting its widespread application in the industry with a focus on deploying ML algorithms onto embedded system-on-chip field-programmable gate array devices.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"4 ","pages":"188-214"},"PeriodicalIF":7.9000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/10008994/10147346.pdf","citationCount":"4","resultStr":"{\"title\":\"Machine Learning for the Control and Monitoring of Electric Machine Drives: Advances and Trends\",\"authors\":\"Shen Zhang;Oliver Wallscheid;Mario Porrmann\",\"doi\":\"10.1109/OJIA.2023.3284717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This review article systematically summarizes the existing literature on utilizing machine learning (ML) techniques for the control and monitoring of electric machine drives. It is anticipated that with the rapid progress in learning algorithms and specialized embedded hardware platforms, ML-based data-driven approaches will become standard tools for the automated high-performance control and monitoring of electric drives. In addition, this article also provides some outlook toward promoting its widespread application in the industry with a focus on deploying ML algorithms onto embedded system-on-chip field-programmable gate array devices.\",\"PeriodicalId\":100629,\"journal\":{\"name\":\"IEEE Open Journal of Industry Applications\",\"volume\":\"4 \",\"pages\":\"188-214\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2023-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8782707/10008994/10147346.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Industry Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10147346/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10147346/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 4

摘要

这篇综述文章系统地总结了利用机器学习(ML)技术控制和监测电机驱动的现有文献。预计随着学习算法和专用嵌入式硬件平台的快速发展,基于ML的数据驱动方法将成为电动驱动器自动高性能控制和监测的标准工具。此外,本文还对促进其在行业中的广泛应用提出了一些展望,重点是将ML算法部署到嵌入式片上系统现场可编程门阵列设备上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning for the Control and Monitoring of Electric Machine Drives: Advances and Trends
This review article systematically summarizes the existing literature on utilizing machine learning (ML) techniques for the control and monitoring of electric machine drives. It is anticipated that with the rapid progress in learning algorithms and specialized embedded hardware platforms, ML-based data-driven approaches will become standard tools for the automated high-performance control and monitoring of electric drives. In addition, this article also provides some outlook toward promoting its widespread application in the industry with a focus on deploying ML algorithms onto embedded system-on-chip field-programmable gate array devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.50
自引率
0.00%
发文量
0
期刊最新文献
Strategy Optimization by Means of Evolutionary Algorithms With Multiple Closing Criteria for Energy Trading A SiC Based Two-Stage Pulsed Power Converter System for Laser Diode Driving and Other Pulsed Current Applications Magnetostriction Effect on Vibration and Acoustic Noise in Permanent Magnet Synchronous Motors Model Predictive Control in Multilevel Inverters Part II: Renewable Energies and Grid Applications Model Predictive Control in Multilevel Inverters Part I: Basic Strategy and Performance Improvement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1