基于递归神经网络的SiC MOSFET有源栅极驱动时序预测

IF 7.9 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of Industry Applications Pub Date : 2023-07-03 DOI:10.1109/OJIA.2023.3291637
Li Yang;Yuxuan Liu;Wensong Yu;Iqbal Husain
{"title":"基于递归神经网络的SiC MOSFET有源栅极驱动时序预测","authors":"Li Yang;Yuxuan Liu;Wensong Yu;Iqbal Husain","doi":"10.1109/OJIA.2023.3291637","DOIUrl":null,"url":null,"abstract":"This article develops a recurrent neural network (RNN) with an encoder–decoder structure to predict the driving sequence of SiC MOSFET active gate drivers (AGDs). With a set of switching targets as the input, the predictor generates an optimal active gate driving sequence to improve the switching transient. The development is based on a hybrid platform across MATLAB, PyTorch, and LTspice. A high-fidelity switching model is implemented in MATLAB to obtain reliable training data. The sequence predictor is trained with PyTorch. The predicted sequence is verified on an example Buck circuit in LTspice. In contrast to the state-of-the-art approach, the proposed method avoids exhaustive search in a large solution space; the sequence length is dynamically predicted per the driving strength at each step. The AGD sequences generated by the predictor effectively and precisely improve the switching transients, making the proposed sequence predictor an integral and valuable component for active gate driving.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"4 ","pages":"227-237"},"PeriodicalIF":7.9000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/10008994/10171405.pdf","citationCount":"0","resultStr":"{\"title\":\"Sequence Prediction for SiC MOSFET Active Gate Driving With a Recurrent Neural Network\",\"authors\":\"Li Yang;Yuxuan Liu;Wensong Yu;Iqbal Husain\",\"doi\":\"10.1109/OJIA.2023.3291637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article develops a recurrent neural network (RNN) with an encoder–decoder structure to predict the driving sequence of SiC MOSFET active gate drivers (AGDs). With a set of switching targets as the input, the predictor generates an optimal active gate driving sequence to improve the switching transient. The development is based on a hybrid platform across MATLAB, PyTorch, and LTspice. A high-fidelity switching model is implemented in MATLAB to obtain reliable training data. The sequence predictor is trained with PyTorch. The predicted sequence is verified on an example Buck circuit in LTspice. In contrast to the state-of-the-art approach, the proposed method avoids exhaustive search in a large solution space; the sequence length is dynamically predicted per the driving strength at each step. The AGD sequences generated by the predictor effectively and precisely improve the switching transients, making the proposed sequence predictor an integral and valuable component for active gate driving.\",\"PeriodicalId\":100629,\"journal\":{\"name\":\"IEEE Open Journal of Industry Applications\",\"volume\":\"4 \",\"pages\":\"227-237\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8782707/10008994/10171405.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Industry Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10171405/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10171405/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文开发了一种具有编码器-解码器结构的递归神经网络(RNN)来预测SiC MOSFET有源栅极驱动器(AGD)的驱动序列。以一组开关目标作为输入,预测器生成最佳有源栅极驱动序列以改善开关瞬态。该开发基于MATLAB、PyTorch和LTspice的混合平台。在MATLAB中实现了高保真度切换模型,以获得可靠的训练数据。序列预测器使用PyTorch进行训练。预测序列在LTspice中的一个示例Buck电路上进行了验证。与现有技术相比,所提出的方法避免了在大的求解空间中进行穷举搜索;在每个步骤中根据驱动强度动态地预测序列长度。预测器生成的AGD序列有效而精确地改善了开关瞬态,使所提出的序列预测器成为有源栅极驱动的一个有价值的集成组件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sequence Prediction for SiC MOSFET Active Gate Driving With a Recurrent Neural Network
This article develops a recurrent neural network (RNN) with an encoder–decoder structure to predict the driving sequence of SiC MOSFET active gate drivers (AGDs). With a set of switching targets as the input, the predictor generates an optimal active gate driving sequence to improve the switching transient. The development is based on a hybrid platform across MATLAB, PyTorch, and LTspice. A high-fidelity switching model is implemented in MATLAB to obtain reliable training data. The sequence predictor is trained with PyTorch. The predicted sequence is verified on an example Buck circuit in LTspice. In contrast to the state-of-the-art approach, the proposed method avoids exhaustive search in a large solution space; the sequence length is dynamically predicted per the driving strength at each step. The AGD sequences generated by the predictor effectively and precisely improve the switching transients, making the proposed sequence predictor an integral and valuable component for active gate driving.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.50
自引率
0.00%
发文量
0
期刊最新文献
Strategy Optimization by Means of Evolutionary Algorithms With Multiple Closing Criteria for Energy Trading A SiC Based Two-Stage Pulsed Power Converter System for Laser Diode Driving and Other Pulsed Current Applications Magnetostriction Effect on Vibration and Acoustic Noise in Permanent Magnet Synchronous Motors Model Predictive Control in Multilevel Inverters Part II: Renewable Energies and Grid Applications Model Predictive Control in Multilevel Inverters Part I: Basic Strategy and Performance Improvement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1