伤口测量方法的可靠性

Dahlia Musa;Frank Guido-Sanz;Mindi Anderson;Salam Daher
{"title":"伤口测量方法的可靠性","authors":"Dahlia Musa;Frank Guido-Sanz;Mindi Anderson;Salam Daher","doi":"10.1109/OJIM.2022.3219471","DOIUrl":null,"url":null,"abstract":"Reliable and accurate measurement methods are necessary for the clinical assessment of wounds. Repeated measure of a wound indicates whether its healing is progressing or deteriorating, and if alternate treatment must be initiated. Many wound measurement techniques lack accuracy and reliability. Technology: We developed a software prototype that calculates 3-D wound measurements from 3-D scans. We conducted a study to compare the software prototype to physical and 2-D image measurement techniques commonly used by clinicians. We compared inter-rater reliability between the techniques and measurements (i.e., length, width, depth, perimeter, and surface area). Results: Inter-rater reliability was good or excellent for the physical, image, and software measurement techniques; however, there were significant differences in measurements between the techniques. For complex measurements (i.e., perimeter and surface area), the reliability of the software exceeded that of the physical and image techniques. Conclusion: Although inter-rater reliability was high for all measurement techniques, there was significant variability between the techniques. The software was overall most reliable, especially for calculation of complex measurements. Clinical Impact: Reducing the variability of wound measurements may improve patient outcomes, reduce wound prevalence, and mitigate the associated morbidity, mortality, and costs of these occurrences.","PeriodicalId":100630,"journal":{"name":"IEEE Open Journal of Instrumentation and Measurement","volume":"1 ","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9552935/9687502/09942711.pdf","citationCount":"1","resultStr":"{\"title\":\"Reliability of Wound Measurement Methods\",\"authors\":\"Dahlia Musa;Frank Guido-Sanz;Mindi Anderson;Salam Daher\",\"doi\":\"10.1109/OJIM.2022.3219471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reliable and accurate measurement methods are necessary for the clinical assessment of wounds. Repeated measure of a wound indicates whether its healing is progressing or deteriorating, and if alternate treatment must be initiated. Many wound measurement techniques lack accuracy and reliability. Technology: We developed a software prototype that calculates 3-D wound measurements from 3-D scans. We conducted a study to compare the software prototype to physical and 2-D image measurement techniques commonly used by clinicians. We compared inter-rater reliability between the techniques and measurements (i.e., length, width, depth, perimeter, and surface area). Results: Inter-rater reliability was good or excellent for the physical, image, and software measurement techniques; however, there were significant differences in measurements between the techniques. For complex measurements (i.e., perimeter and surface area), the reliability of the software exceeded that of the physical and image techniques. Conclusion: Although inter-rater reliability was high for all measurement techniques, there was significant variability between the techniques. The software was overall most reliable, especially for calculation of complex measurements. Clinical Impact: Reducing the variability of wound measurements may improve patient outcomes, reduce wound prevalence, and mitigate the associated morbidity, mortality, and costs of these occurrences.\",\"PeriodicalId\":100630,\"journal\":{\"name\":\"IEEE Open Journal of Instrumentation and Measurement\",\"volume\":\"1 \",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/9552935/9687502/09942711.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Instrumentation and Measurement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9942711/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Instrumentation and Measurement","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9942711/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

可靠和准确的测量方法对于伤口的临床评估是必要的。对伤口的反复测量表明伤口的愈合是在进行还是在恶化,以及是否必须开始替代治疗。许多伤口测量技术缺乏准确性和可靠性。技术:我们开发了一个软件原型,通过三维扫描计算三维伤口测量值。我们进行了一项研究,将软件原型与临床医生常用的物理和二维图像测量技术进行比较。我们比较了技术和测量(即长度、宽度、深度、周长和表面积)之间的评分者间可靠性。结果:物理、图像和软件测量技术的评分者间可靠性良好或优秀;然而,两种技术之间的测量结果存在显著差异。对于复杂的测量(即周长和表面积),软件的可靠性超过了物理和图像技术的可靠性。结论:尽管所有测量技术的评分者间可靠性较高,但各技术之间存在显著差异。该软件总体上是最可靠的,尤其是在计算复杂测量时。临床影响:减少伤口测量的可变性可以改善患者的预后,降低伤口发生率,并降低这些事件的相关发病率、死亡率和成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reliability of Wound Measurement Methods
Reliable and accurate measurement methods are necessary for the clinical assessment of wounds. Repeated measure of a wound indicates whether its healing is progressing or deteriorating, and if alternate treatment must be initiated. Many wound measurement techniques lack accuracy and reliability. Technology: We developed a software prototype that calculates 3-D wound measurements from 3-D scans. We conducted a study to compare the software prototype to physical and 2-D image measurement techniques commonly used by clinicians. We compared inter-rater reliability between the techniques and measurements (i.e., length, width, depth, perimeter, and surface area). Results: Inter-rater reliability was good or excellent for the physical, image, and software measurement techniques; however, there were significant differences in measurements between the techniques. For complex measurements (i.e., perimeter and surface area), the reliability of the software exceeded that of the physical and image techniques. Conclusion: Although inter-rater reliability was high for all measurement techniques, there was significant variability between the techniques. The software was overall most reliable, especially for calculation of complex measurements. Clinical Impact: Reducing the variability of wound measurements may improve patient outcomes, reduce wound prevalence, and mitigate the associated morbidity, mortality, and costs of these occurrences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatiotemporal Variance Image Reconstruction for Thermographic Inspections Fault Detection in an Electro-Hydrostatic Actuator Using Polyscale Complexity Measures and Bayesian Classification Baseline-Free Damage Imaging for Structural Health Monitoring of Composite Lap Joint Using Ultrasonic-Guided Waves Spiking Neural Networks for Energy-Efficient Acoustic Emission-Based Monitoring IMU Optimal Rotation Rates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1