Maxime Boksebeld, Nicholas P. Blanchard, Ali Jaffal, Yann Chevolot, Virginie Monnier
{"title":"用简单的离心法对低纵横比金纳米棒进行形状选择纯化","authors":"Maxime Boksebeld, Nicholas P. Blanchard, Ali Jaffal, Yann Chevolot, Virginie Monnier","doi":"10.1007/s13404-017-0197-9","DOIUrl":null,"url":null,"abstract":"<p>This work presents a new and simple procedure for the shape selective purification of gold nanorods from a mixture of rods and spheres. Previously reported methods were time-consuming and revealed several drawbacks such as low yields and difficulty to recover the purified nanoparticles. Additionally, they were mostly applied to high aspect ratio (AR) nanorods. Our process is based on only simple and short centrifugation steps in order to precipitate specifically gold nanospheres. Samples containing low AR nanorods (AR?<?6) were selected to perform the purification process. The supernatant content was followed by UV-Visible absorption spectroscopy after each centrifugation step. Then, transmission electron microscopy (TEM) allowed extract the purification efficiency thanks to shape analyses performed on more than 1000 nanoparticles. These results showed that our centrifugation process was applied successfully to three sizes of nanorods (2.4, 3.7, and 5.3). High purification yields of 72 and 78% were attained for AR?=?3.7 and AR?=?5.3 nanorods, respectively.</p>","PeriodicalId":55086,"journal":{"name":"Gold Bulletin","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2017-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13404-017-0197-9","citationCount":"11","resultStr":"{\"title\":\"Shape-selective purification of gold nanorods with low aspect ratio using a simple centrifugation method\",\"authors\":\"Maxime Boksebeld, Nicholas P. Blanchard, Ali Jaffal, Yann Chevolot, Virginie Monnier\",\"doi\":\"10.1007/s13404-017-0197-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work presents a new and simple procedure for the shape selective purification of gold nanorods from a mixture of rods and spheres. Previously reported methods were time-consuming and revealed several drawbacks such as low yields and difficulty to recover the purified nanoparticles. Additionally, they were mostly applied to high aspect ratio (AR) nanorods. Our process is based on only simple and short centrifugation steps in order to precipitate specifically gold nanospheres. Samples containing low AR nanorods (AR?<?6) were selected to perform the purification process. The supernatant content was followed by UV-Visible absorption spectroscopy after each centrifugation step. Then, transmission electron microscopy (TEM) allowed extract the purification efficiency thanks to shape analyses performed on more than 1000 nanoparticles. These results showed that our centrifugation process was applied successfully to three sizes of nanorods (2.4, 3.7, and 5.3). High purification yields of 72 and 78% were attained for AR?=?3.7 and AR?=?5.3 nanorods, respectively.</p>\",\"PeriodicalId\":55086,\"journal\":{\"name\":\"Gold Bulletin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2017-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s13404-017-0197-9\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gold Bulletin\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13404-017-0197-9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gold Bulletin","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13404-017-0197-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
Shape-selective purification of gold nanorods with low aspect ratio using a simple centrifugation method
This work presents a new and simple procedure for the shape selective purification of gold nanorods from a mixture of rods and spheres. Previously reported methods were time-consuming and revealed several drawbacks such as low yields and difficulty to recover the purified nanoparticles. Additionally, they were mostly applied to high aspect ratio (AR) nanorods. Our process is based on only simple and short centrifugation steps in order to precipitate specifically gold nanospheres. Samples containing low AR nanorods (AR?<?6) were selected to perform the purification process. The supernatant content was followed by UV-Visible absorption spectroscopy after each centrifugation step. Then, transmission electron microscopy (TEM) allowed extract the purification efficiency thanks to shape analyses performed on more than 1000 nanoparticles. These results showed that our centrifugation process was applied successfully to three sizes of nanorods (2.4, 3.7, and 5.3). High purification yields of 72 and 78% were attained for AR?=?3.7 and AR?=?5.3 nanorods, respectively.
期刊介绍:
Gold Bulletin is the premier international peer reviewed journal on the latest science, technology and applications of gold. It includes papers on the latest research advances, state-of-the-art reviews, conference reports, book reviews and highlights of patents and scientific literature. Gold Bulletin does not publish manuscripts covering the snthesis of Gold nanoparticles in the presence of plant extracts or other nature-derived extracts. Gold Bulletin has been published over 40 years as a multidisciplinary journal read by chemists, physicists, engineers, metallurgists, materials scientists, biotechnologists, surface scientists, and nanotechnologists amongst others, both within industry and academia. Gold Bulletin is published in Association with the World Gold Council.