基于抽象的不确定性感知腿导航规划

Jesse Jiang;Samuel Coogan;Ye Zhao
{"title":"基于抽象的不确定性感知腿导航规划","authors":"Jesse Jiang;Samuel Coogan;Ye Zhao","doi":"10.1109/OJCSYS.2023.3296000","DOIUrl":null,"url":null,"abstract":"This article addresses the problem of temporal-logic-based planning for bipedal robots in uncertain environments. We first propose an Interval Markov Decision Process abstraction of bipedal locomotion (IMDP-BL). Motion perturbations from multiple sources of uncertainty are incorporated into our model using stacked Gaussian process learning in order to achieve formal guarantees on the behavior of the system. We consider tasks which can be specified using Linear Temporal Logic (LTL). Through a product IMDP construction combining the IMDP-BL of the bipedal robot and a Deterministic Rabin Automaton (DRA) of the specifications, we synthesize control policies which allow the robot to safely traverse the environment, iteratively learning the unknown dynamics until the specifications can be satisfied with satisfactory probability. We demonstrate our methods with simulation case studies.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"2 ","pages":"221-234"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9552933/9973428/10184473.pdf","citationCount":"1","resultStr":"{\"title\":\"Abstraction-Based Planning for Uncertainty-Aware Legged Navigation\",\"authors\":\"Jesse Jiang;Samuel Coogan;Ye Zhao\",\"doi\":\"10.1109/OJCSYS.2023.3296000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article addresses the problem of temporal-logic-based planning for bipedal robots in uncertain environments. We first propose an Interval Markov Decision Process abstraction of bipedal locomotion (IMDP-BL). Motion perturbations from multiple sources of uncertainty are incorporated into our model using stacked Gaussian process learning in order to achieve formal guarantees on the behavior of the system. We consider tasks which can be specified using Linear Temporal Logic (LTL). Through a product IMDP construction combining the IMDP-BL of the bipedal robot and a Deterministic Rabin Automaton (DRA) of the specifications, we synthesize control policies which allow the robot to safely traverse the environment, iteratively learning the unknown dynamics until the specifications can be satisfied with satisfactory probability. We demonstrate our methods with simulation case studies.\",\"PeriodicalId\":73299,\"journal\":{\"name\":\"IEEE open journal of control systems\",\"volume\":\"2 \",\"pages\":\"221-234\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/9552933/9973428/10184473.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of control systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10184473/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10184473/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文解决了两足机器人在不确定环境中基于时间逻辑的规划问题。我们首先提出了两足运动的区间马尔可夫决策过程抽象(IMDP-BL)。使用堆叠高斯过程学习将来自多个不确定性来源的运动扰动纳入我们的模型中,以实现对系统行为的形式保证。我们考虑可以使用线性时序逻辑(LTL)指定的任务。通过将两足机器人的IMDP-BL和规范的确定性拉宾自动机(DRA)相结合的产品IMDP结构,我们综合了允许机器人安全穿越环境的控制策略,迭代学习未知动力学,直到以令人满意的概率满足规范。我们通过模拟案例研究展示了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Abstraction-Based Planning for Uncertainty-Aware Legged Navigation
This article addresses the problem of temporal-logic-based planning for bipedal robots in uncertain environments. We first propose an Interval Markov Decision Process abstraction of bipedal locomotion (IMDP-BL). Motion perturbations from multiple sources of uncertainty are incorporated into our model using stacked Gaussian process learning in order to achieve formal guarantees on the behavior of the system. We consider tasks which can be specified using Linear Temporal Logic (LTL). Through a product IMDP construction combining the IMDP-BL of the bipedal robot and a Deterministic Rabin Automaton (DRA) of the specifications, we synthesize control policies which allow the robot to safely traverse the environment, iteratively learning the unknown dynamics until the specifications can be satisfied with satisfactory probability. We demonstrate our methods with simulation case studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Erratum to “Learning to Boost the Performance of Stable Nonlinear Systems” Generalizing Robust Control Barrier Functions From a Controller Design Perspective 2024 Index IEEE Open Journal of Control Systems Vol. 3 Front Cover Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1