{"title":"基于单核功率门控和动态电压和频率缩放的边缘数据中心细粒度在线能量管理","authors":"Shoulu Hou;Wei Ni;Kailan Zhao;Bo Cheng;Shuai Zhao;Zhiguo Wan;Xiulei Liu;Shiping Chen","doi":"10.1109/TSUSC.2023.3250487","DOIUrl":null,"url":null,"abstract":"It is important to minimize the energy consumption of large-scale, geographically distributed edge data centers (EDCs). While modern processing units (PUs) have energy-saving features like Dynamic Voltage and Frequency Scaling (DVFS) and Per-Core Power Gating (PCPG), optimization is still complex and requires a holistic approach. This article presents a new decentralized, three-timescale, online optimization approach that enables multicore micro data centers (MDCs) to optimize their per-PU power states, per-enabled-PU voltage-frequency levels and offloading schedules at three different timescales. The key idea is that we employ multi-timescale Lyapunov optimization to decouple the energy minimization between workload scheduling and result delivery at a small timescale and PU configuration at large timescales. Another important aspect is that we apply the primal decomposition to decouple the PU configuration between a per-enabled-PU voltage-frequency level at an intermediate timescale and a per-PU power state at a large timescale. Experiments demonstrate that the proposed approach improves energy efficiency significantly by up to 4.5 times in our considered lightly loaded situations where DVFS alone does not work effectively, compared to existing benchmarks.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"8 3","pages":"522-536"},"PeriodicalIF":3.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fine-Grained Online Energy Management of Edge Data Centers Using Per-Core Power Gating and Dynamic Voltage and Frequency Scaling\",\"authors\":\"Shoulu Hou;Wei Ni;Kailan Zhao;Bo Cheng;Shuai Zhao;Zhiguo Wan;Xiulei Liu;Shiping Chen\",\"doi\":\"10.1109/TSUSC.2023.3250487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is important to minimize the energy consumption of large-scale, geographically distributed edge data centers (EDCs). While modern processing units (PUs) have energy-saving features like Dynamic Voltage and Frequency Scaling (DVFS) and Per-Core Power Gating (PCPG), optimization is still complex and requires a holistic approach. This article presents a new decentralized, three-timescale, online optimization approach that enables multicore micro data centers (MDCs) to optimize their per-PU power states, per-enabled-PU voltage-frequency levels and offloading schedules at three different timescales. The key idea is that we employ multi-timescale Lyapunov optimization to decouple the energy minimization between workload scheduling and result delivery at a small timescale and PU configuration at large timescales. Another important aspect is that we apply the primal decomposition to decouple the PU configuration between a per-enabled-PU voltage-frequency level at an intermediate timescale and a per-PU power state at a large timescale. Experiments demonstrate that the proposed approach improves energy efficiency significantly by up to 4.5 times in our considered lightly loaded situations where DVFS alone does not work effectively, compared to existing benchmarks.\",\"PeriodicalId\":13268,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Computing\",\"volume\":\"8 3\",\"pages\":\"522-536\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10056241/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10056241/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Fine-Grained Online Energy Management of Edge Data Centers Using Per-Core Power Gating and Dynamic Voltage and Frequency Scaling
It is important to minimize the energy consumption of large-scale, geographically distributed edge data centers (EDCs). While modern processing units (PUs) have energy-saving features like Dynamic Voltage and Frequency Scaling (DVFS) and Per-Core Power Gating (PCPG), optimization is still complex and requires a holistic approach. This article presents a new decentralized, three-timescale, online optimization approach that enables multicore micro data centers (MDCs) to optimize their per-PU power states, per-enabled-PU voltage-frequency levels and offloading schedules at three different timescales. The key idea is that we employ multi-timescale Lyapunov optimization to decouple the energy minimization between workload scheduling and result delivery at a small timescale and PU configuration at large timescales. Another important aspect is that we apply the primal decomposition to decouple the PU configuration between a per-enabled-PU voltage-frequency level at an intermediate timescale and a per-PU power state at a large timescale. Experiments demonstrate that the proposed approach improves energy efficiency significantly by up to 4.5 times in our considered lightly loaded situations where DVFS alone does not work effectively, compared to existing benchmarks.