{"title":"利用以骨架为中心的统计能量函数探索蛋白质肽配体的结合位置和骨架构象","authors":"Lu Zhang, Haiyan Liu","doi":"10.1007/s10822-023-00518-0","DOIUrl":null,"url":null,"abstract":"<div><p>When designing peptide ligands based on the structure of a protein receptor, it can be very useful to narrow down the possible binding positions and bound conformations of the ligand without the need to choose its amino acid sequence in advance. Here, we construct and benchmark a tool for this purpose based on a recently reported statistical energy model named SCUBA (Sidechain-Unknown Backbone Arrangement) for designing protein backbones without considering specific amino acid sequences. With this tool, backbone fragments of different local conformation types are generated and optimized with SCUBA-driven stochastic simulations and simulated annealing, and then ranked and clustered to obtain representative backbone fragment poses of strong SCUBA interaction energies with the receptor. We computationally benchmarked the tool on 111 known protein-peptide complex structures. When the bound ligands are in the strand conformation, the method is able to generate backbone fragments of both low SCUBA energies and low root mean square deviations from experimental structures of peptide ligands. When the bound ligands are helices or coils, low-energy backbone fragments with binding poses similar to experimental structures have been generated for approximately 50% of benchmark cases. We have examined a number of predicted ligand-receptor complexes by atomistic molecular dynamics simulations, in which the peptide ligands have been found to stay at the predicted binding sites and to maintain their local conformations. These results suggest that promising backbone structures of peptides bound to protein receptors can be designed by identifying outstanding minima on the SCUBA-modeled backbone energy landscape.</p></div>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"37 10","pages":"463 - 478"},"PeriodicalIF":3.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring binding positions and backbone conformations of peptide ligands of proteins with a backbone-centred statistical energy function\",\"authors\":\"Lu Zhang, Haiyan Liu\",\"doi\":\"10.1007/s10822-023-00518-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>When designing peptide ligands based on the structure of a protein receptor, it can be very useful to narrow down the possible binding positions and bound conformations of the ligand without the need to choose its amino acid sequence in advance. Here, we construct and benchmark a tool for this purpose based on a recently reported statistical energy model named SCUBA (Sidechain-Unknown Backbone Arrangement) for designing protein backbones without considering specific amino acid sequences. With this tool, backbone fragments of different local conformation types are generated and optimized with SCUBA-driven stochastic simulations and simulated annealing, and then ranked and clustered to obtain representative backbone fragment poses of strong SCUBA interaction energies with the receptor. We computationally benchmarked the tool on 111 known protein-peptide complex structures. When the bound ligands are in the strand conformation, the method is able to generate backbone fragments of both low SCUBA energies and low root mean square deviations from experimental structures of peptide ligands. When the bound ligands are helices or coils, low-energy backbone fragments with binding poses similar to experimental structures have been generated for approximately 50% of benchmark cases. We have examined a number of predicted ligand-receptor complexes by atomistic molecular dynamics simulations, in which the peptide ligands have been found to stay at the predicted binding sites and to maintain their local conformations. These results suggest that promising backbone structures of peptides bound to protein receptors can be designed by identifying outstanding minima on the SCUBA-modeled backbone energy landscape.</p></div>\",\"PeriodicalId\":621,\"journal\":{\"name\":\"Journal of Computer-Aided Molecular Design\",\"volume\":\"37 10\",\"pages\":\"463 - 478\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer-Aided Molecular Design\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10822-023-00518-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer-Aided Molecular Design","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10822-023-00518-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Exploring binding positions and backbone conformations of peptide ligands of proteins with a backbone-centred statistical energy function
When designing peptide ligands based on the structure of a protein receptor, it can be very useful to narrow down the possible binding positions and bound conformations of the ligand without the need to choose its amino acid sequence in advance. Here, we construct and benchmark a tool for this purpose based on a recently reported statistical energy model named SCUBA (Sidechain-Unknown Backbone Arrangement) for designing protein backbones without considering specific amino acid sequences. With this tool, backbone fragments of different local conformation types are generated and optimized with SCUBA-driven stochastic simulations and simulated annealing, and then ranked and clustered to obtain representative backbone fragment poses of strong SCUBA interaction energies with the receptor. We computationally benchmarked the tool on 111 known protein-peptide complex structures. When the bound ligands are in the strand conformation, the method is able to generate backbone fragments of both low SCUBA energies and low root mean square deviations from experimental structures of peptide ligands. When the bound ligands are helices or coils, low-energy backbone fragments with binding poses similar to experimental structures have been generated for approximately 50% of benchmark cases. We have examined a number of predicted ligand-receptor complexes by atomistic molecular dynamics simulations, in which the peptide ligands have been found to stay at the predicted binding sites and to maintain their local conformations. These results suggest that promising backbone structures of peptides bound to protein receptors can be designed by identifying outstanding minima on the SCUBA-modeled backbone energy landscape.
期刊介绍:
The Journal of Computer-Aided Molecular Design provides a form for disseminating information on both the theory and the application of computer-based methods in the analysis and design of molecules. The scope of the journal encompasses papers which report new and original research and applications in the following areas:
- theoretical chemistry;
- computational chemistry;
- computer and molecular graphics;
- molecular modeling;
- protein engineering;
- drug design;
- expert systems;
- general structure-property relationships;
- molecular dynamics;
- chemical database development and usage.