Yashvir S. Chauhan, Muhuddin Rajin Anwar, Mark F. Richards, Lachlan Lake, Victor O. Sadras, David J. Luckett, Rosy Raman, Stephen Krosch, Neroli Graham
{"title":"土壤水分对鹰嘴豆开花和结荚的影响:对霜冻和热胁迫建模和管理的启示","authors":"Yashvir S. Chauhan, Muhuddin Rajin Anwar, Mark F. Richards, Lachlan Lake, Victor O. Sadras, David J. Luckett, Rosy Raman, Stephen Krosch, Neroli Graham","doi":"10.1007/s13593-023-00903-x","DOIUrl":null,"url":null,"abstract":"<div><p>Phenological development is critical for crop adaptation. Phenology models are typically driven by temperature and photoperiod, but chickpea phenology is also modulated by soil water, which is not captured in these models. This study is aimed at evaluating the hypotheses that accounting for soil water improves (i) the prediction of flowering, pod-set, and flowering-to-pod-set interval in chickpea and (ii) the computation of yield-reducing frost and heat events after flowering. To test these hypotheses, we compared three variants of the Agricultural Production System Simulator (APSIM): (i) APSIMc, which models development with no temperature threshold for pod-set; (ii) APSIMx, which sets a threshold of 15 °C for pod-set; and (iii) APSIMw, derived from APSIMc with an algorithm to moderate the developmental rate as a function of soil water, in addition to temperature and photoperiod common to all three models. Comparison of modelled and actual flowering and pod-set of a common cheque cultivar PBA Boundary<sup>A</sup> in 54 diverse environments showed that accuracy and precision were superior for APSIMw. Because of improved prediction of flowering and pod-set timing, APSIMw improved the computation of the frequency of post-flowering frosts compared to APSIMc and APSIMx. The number of heat events was similar for all three models. We conclude that accounting for water effects on plant development can allow better matching between phenology and environment.</p></div>","PeriodicalId":7721,"journal":{"name":"Agronomy for Sustainable Development","volume":"43 4","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13593-023-00903-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of soil water on flowering and pod-set in chickpea: implications for modelling and managing frost and heat stress\",\"authors\":\"Yashvir S. Chauhan, Muhuddin Rajin Anwar, Mark F. Richards, Lachlan Lake, Victor O. Sadras, David J. Luckett, Rosy Raman, Stephen Krosch, Neroli Graham\",\"doi\":\"10.1007/s13593-023-00903-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Phenological development is critical for crop adaptation. Phenology models are typically driven by temperature and photoperiod, but chickpea phenology is also modulated by soil water, which is not captured in these models. This study is aimed at evaluating the hypotheses that accounting for soil water improves (i) the prediction of flowering, pod-set, and flowering-to-pod-set interval in chickpea and (ii) the computation of yield-reducing frost and heat events after flowering. To test these hypotheses, we compared three variants of the Agricultural Production System Simulator (APSIM): (i) APSIMc, which models development with no temperature threshold for pod-set; (ii) APSIMx, which sets a threshold of 15 °C for pod-set; and (iii) APSIMw, derived from APSIMc with an algorithm to moderate the developmental rate as a function of soil water, in addition to temperature and photoperiod common to all three models. Comparison of modelled and actual flowering and pod-set of a common cheque cultivar PBA Boundary<sup>A</sup> in 54 diverse environments showed that accuracy and precision were superior for APSIMw. Because of improved prediction of flowering and pod-set timing, APSIMw improved the computation of the frequency of post-flowering frosts compared to APSIMc and APSIMx. The number of heat events was similar for all three models. We conclude that accounting for water effects on plant development can allow better matching between phenology and environment.</p></div>\",\"PeriodicalId\":7721,\"journal\":{\"name\":\"Agronomy for Sustainable Development\",\"volume\":\"43 4\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2023-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13593-023-00903-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agronomy for Sustainable Development\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13593-023-00903-x\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy for Sustainable Development","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s13593-023-00903-x","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Effect of soil water on flowering and pod-set in chickpea: implications for modelling and managing frost and heat stress
Phenological development is critical for crop adaptation. Phenology models are typically driven by temperature and photoperiod, but chickpea phenology is also modulated by soil water, which is not captured in these models. This study is aimed at evaluating the hypotheses that accounting for soil water improves (i) the prediction of flowering, pod-set, and flowering-to-pod-set interval in chickpea and (ii) the computation of yield-reducing frost and heat events after flowering. To test these hypotheses, we compared three variants of the Agricultural Production System Simulator (APSIM): (i) APSIMc, which models development with no temperature threshold for pod-set; (ii) APSIMx, which sets a threshold of 15 °C for pod-set; and (iii) APSIMw, derived from APSIMc with an algorithm to moderate the developmental rate as a function of soil water, in addition to temperature and photoperiod common to all three models. Comparison of modelled and actual flowering and pod-set of a common cheque cultivar PBA BoundaryA in 54 diverse environments showed that accuracy and precision were superior for APSIMw. Because of improved prediction of flowering and pod-set timing, APSIMw improved the computation of the frequency of post-flowering frosts compared to APSIMc and APSIMx. The number of heat events was similar for all three models. We conclude that accounting for water effects on plant development can allow better matching between phenology and environment.
期刊介绍:
Agronomy for Sustainable Development (ASD) is a peer-reviewed scientific journal of international scope, dedicated to publishing original research articles, review articles, and meta-analyses aimed at improving sustainability in agricultural and food systems. The journal serves as a bridge between agronomy, cropping, and farming system research and various other disciplines including ecology, genetics, economics, and social sciences.
ASD encourages studies in agroecology, participatory research, and interdisciplinary approaches, with a focus on systems thinking applied at different scales from field to global levels.
Research articles published in ASD should present significant scientific advancements compared to existing knowledge, within an international context. Review articles should critically evaluate emerging topics, and opinion papers may also be submitted as reviews. Meta-analysis articles should provide clear contributions to resolving widely debated scientific questions.