{"title":"基于单轴磁强计测量序列扩展卡尔曼滤波的三轴高精度航天器姿态估计","authors":"Tamer Mekky Ahmed Habib","doi":"10.1007/s42401-023-00221-w","DOIUrl":null,"url":null,"abstract":"<div><p>Magnetometer is a highly advantageous sensor for determining a spacecraft’s attitude. This article provides a solution to the problem of spacecraft attitude estimation using magnetometer measurements only. To ensure full observability of spacecraft attitude states, it is necessary to use at least two types of sensors. Consequently, utilizing a single sensor, such as the magnetometer, poses a significant challenge for any attitude estimation algorithm, including the extended Kalman filter (EKF). Moreover, implementing the EKF algorithm, or any other attitude estimation algorithm, is computationally intensive. To address these issues, an algorithm has been developed that estimates spacecraft attitude angles and attitude rates using a sequential extended Kalman filter (SEKF). This algorithm offers numerous benefits over those found in the literature such as high accuracy, low computational resource requirements, the ability to converge even with large initial attitude and angular velocity estimation errors, and the ability to function even if two of the three measurement channels of the magnetometer are not functioning. With these benefits, the developed SEKF algorithm is capable of operating in all spacecraft operational modes, delivering accurate performance and computation time. In spite of measurements with large noise values, the high accuracy achieved by the SEKF algorithm enables the magnetometer to serve as the sole source of attitude information, even if one or two magnetometer measurement channels are not functioning.</p></div>","PeriodicalId":36309,"journal":{"name":"Aerospace Systems","volume":"6 2","pages":"365 - 374"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42401-023-00221-w.pdf","citationCount":"1","resultStr":"{\"title\":\"Three-axis high-accuracy spacecraft attitude estimation via sequential extended Kalman filtering of single-axis magnetometer measurements\",\"authors\":\"Tamer Mekky Ahmed Habib\",\"doi\":\"10.1007/s42401-023-00221-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Magnetometer is a highly advantageous sensor for determining a spacecraft’s attitude. This article provides a solution to the problem of spacecraft attitude estimation using magnetometer measurements only. To ensure full observability of spacecraft attitude states, it is necessary to use at least two types of sensors. Consequently, utilizing a single sensor, such as the magnetometer, poses a significant challenge for any attitude estimation algorithm, including the extended Kalman filter (EKF). Moreover, implementing the EKF algorithm, or any other attitude estimation algorithm, is computationally intensive. To address these issues, an algorithm has been developed that estimates spacecraft attitude angles and attitude rates using a sequential extended Kalman filter (SEKF). This algorithm offers numerous benefits over those found in the literature such as high accuracy, low computational resource requirements, the ability to converge even with large initial attitude and angular velocity estimation errors, and the ability to function even if two of the three measurement channels of the magnetometer are not functioning. With these benefits, the developed SEKF algorithm is capable of operating in all spacecraft operational modes, delivering accurate performance and computation time. In spite of measurements with large noise values, the high accuracy achieved by the SEKF algorithm enables the magnetometer to serve as the sole source of attitude information, even if one or two magnetometer measurement channels are not functioning.</p></div>\",\"PeriodicalId\":36309,\"journal\":{\"name\":\"Aerospace Systems\",\"volume\":\"6 2\",\"pages\":\"365 - 374\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42401-023-00221-w.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42401-023-00221-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Systems","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42401-023-00221-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Three-axis high-accuracy spacecraft attitude estimation via sequential extended Kalman filtering of single-axis magnetometer measurements
Magnetometer is a highly advantageous sensor for determining a spacecraft’s attitude. This article provides a solution to the problem of spacecraft attitude estimation using magnetometer measurements only. To ensure full observability of spacecraft attitude states, it is necessary to use at least two types of sensors. Consequently, utilizing a single sensor, such as the magnetometer, poses a significant challenge for any attitude estimation algorithm, including the extended Kalman filter (EKF). Moreover, implementing the EKF algorithm, or any other attitude estimation algorithm, is computationally intensive. To address these issues, an algorithm has been developed that estimates spacecraft attitude angles and attitude rates using a sequential extended Kalman filter (SEKF). This algorithm offers numerous benefits over those found in the literature such as high accuracy, low computational resource requirements, the ability to converge even with large initial attitude and angular velocity estimation errors, and the ability to function even if two of the three measurement channels of the magnetometer are not functioning. With these benefits, the developed SEKF algorithm is capable of operating in all spacecraft operational modes, delivering accurate performance and computation time. In spite of measurements with large noise values, the high accuracy achieved by the SEKF algorithm enables the magnetometer to serve as the sole source of attitude information, even if one or two magnetometer measurement channels are not functioning.
期刊介绍:
Aerospace Systems provides an international, peer-reviewed forum which focuses on system-level research and development regarding aeronautics and astronautics. The journal emphasizes the unique role and increasing importance of informatics on aerospace. It fills a gap in current publishing coverage from outer space vehicles to atmospheric vehicles by highlighting interdisciplinary science, technology and engineering.
Potential topics include, but are not limited to:
Trans-space vehicle systems design and integration
Air vehicle systems
Space vehicle systems
Near-space vehicle systems
Aerospace robotics and unmanned system
Communication, navigation and surveillance
Aerodynamics and aircraft design
Dynamics and control
Aerospace propulsion
Avionics system
Opto-electronic system
Air traffic management
Earth observation
Deep space exploration
Bionic micro-aircraft/spacecraft
Intelligent sensing and Information fusion