选择性激光熔化制备晶格结构的共振频率预测方法

Hao Zhou, Heran Jia, Huizhong Zeng, Yonggang Tu, Linli Li, Xiaoyu Zhang, Hongshuai Lei
{"title":"选择性激光熔化制备晶格结构的共振频率预测方法","authors":"Hao Zhou,&nbsp;Heran Jia,&nbsp;Huizhong Zeng,&nbsp;Yonggang Tu,&nbsp;Linli Li,&nbsp;Xiaoyu Zhang,&nbsp;Hongshuai Lei","doi":"10.1007/s42423-022-00111-x","DOIUrl":null,"url":null,"abstract":"<div><p>Lightweight structures composed of a closed shell and internal lattice infill are highly desirable in satellites on account of their superior specific stiffness and buckling strength, which are brought about by the sandwich effect. These lattice structures can be fabricated by various additive manufacturing techniques, such as selective laser melting (SLM). However, the sub-millimeter-scale shell thickness and lattice strut diameter of the fabricated structure often deviate from the designed dimensions and lead to noteworthy discrepancies between the resonance frequencies of the fabricated structure and those of the initial design model. In this work, a bracket structure for a satellite is designed via topology optimization-based lattice infill approach and fabricated using SLM. A resonance frequency prediction approach based on X-ray micro-computed tomography and the stiffness equivalence is then proposed. Vibration tests are conducted to obtain the resonance frequencies of the fabricated structure. The prediction errors of resonance frequencies for the first three modes are less than 1%, whereas that of the traditional approach based on finite element analysis is as large as 14%.</p></div>","PeriodicalId":100039,"journal":{"name":"Advances in Astronautics Science and Technology","volume":"5 4","pages":"309 - 316"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Resonance frequency prediction approach of lattice structure fabricated by selective laser melting\",\"authors\":\"Hao Zhou,&nbsp;Heran Jia,&nbsp;Huizhong Zeng,&nbsp;Yonggang Tu,&nbsp;Linli Li,&nbsp;Xiaoyu Zhang,&nbsp;Hongshuai Lei\",\"doi\":\"10.1007/s42423-022-00111-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lightweight structures composed of a closed shell and internal lattice infill are highly desirable in satellites on account of their superior specific stiffness and buckling strength, which are brought about by the sandwich effect. These lattice structures can be fabricated by various additive manufacturing techniques, such as selective laser melting (SLM). However, the sub-millimeter-scale shell thickness and lattice strut diameter of the fabricated structure often deviate from the designed dimensions and lead to noteworthy discrepancies between the resonance frequencies of the fabricated structure and those of the initial design model. In this work, a bracket structure for a satellite is designed via topology optimization-based lattice infill approach and fabricated using SLM. A resonance frequency prediction approach based on X-ray micro-computed tomography and the stiffness equivalence is then proposed. Vibration tests are conducted to obtain the resonance frequencies of the fabricated structure. The prediction errors of resonance frequencies for the first three modes are less than 1%, whereas that of the traditional approach based on finite element analysis is as large as 14%.</p></div>\",\"PeriodicalId\":100039,\"journal\":{\"name\":\"Advances in Astronautics Science and Technology\",\"volume\":\"5 4\",\"pages\":\"309 - 316\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Astronautics Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42423-022-00111-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronautics Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42423-022-00111-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由封闭壳体和内部网格填充物组成的轻型结构在卫星中是非常理想的,因为它们具有优异的比刚度和屈曲强度,这是由三明治效应带来的。这些晶格结构可以通过各种增材制造技术来制造,例如选择性激光熔化(SLM)。然而,预制结构的亚毫米级壳体厚度和晶格支柱直径经常偏离设计尺寸,并导致预制结构的共振频率与初始设计模型的共振频率之间存在显著差异。在这项工作中,通过基于拓扑优化的网格填充方法设计了一种卫星支架结构,并使用SLM进行了制造。然后提出了一种基于X射线显微计算机断层扫描和刚度等效的共振频率预测方法。进行振动试验以获得制造结构的共振频率。前三种模式的谐振频率预测误差小于1%,而基于有限元分析的传统方法的预测误差高达14%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resonance frequency prediction approach of lattice structure fabricated by selective laser melting

Lightweight structures composed of a closed shell and internal lattice infill are highly desirable in satellites on account of their superior specific stiffness and buckling strength, which are brought about by the sandwich effect. These lattice structures can be fabricated by various additive manufacturing techniques, such as selective laser melting (SLM). However, the sub-millimeter-scale shell thickness and lattice strut diameter of the fabricated structure often deviate from the designed dimensions and lead to noteworthy discrepancies between the resonance frequencies of the fabricated structure and those of the initial design model. In this work, a bracket structure for a satellite is designed via topology optimization-based lattice infill approach and fabricated using SLM. A resonance frequency prediction approach based on X-ray micro-computed tomography and the stiffness equivalence is then proposed. Vibration tests are conducted to obtain the resonance frequencies of the fabricated structure. The prediction errors of resonance frequencies for the first three modes are less than 1%, whereas that of the traditional approach based on finite element analysis is as large as 14%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
Research on Overload Characteristics of Projectile Penetrating Layered Protective Structures with High-Velocity Video Information-Based Liquid Rocket Engine Fault Simulation Test Method under Complex Environment Preface Game Strategies Against High Orbit Surveillance Satellites Orbital Rendezvous Guidance Strategy for Time-Sensitive Missions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1