{"title":"基于改进长方体交错网格的时空高阶精度有限差分方法模拟三维声波传播","authors":"Shigang Xu, Yang Liu","doi":"10.1007/s11200-020-1013-1","DOIUrl":null,"url":null,"abstract":"<p>To improve the modeling accuracy and adaptability of traditional temporal second-order staggered-grid finite-difference (SFD) methods for 3D acoustic-wave modeling, we propose a modified time-space-domain temporal and spatial high-order SFD stencil on a cuboid grid. The grid nodes on a double-pyramid stencil and the standard orthogonality stencil are used to approximate temporal and spatial derivatives. This stencil can adopt different grid spacing in each spatial axis, and thus it is more flexible than the existing one with the same grid spacing. Based on the time-space-domain dispersion relation, the high-order FD coefficients are generated by using Taylor expansion and least squares. Numerical analyses and modeling examples demonstrate that our proposed schemes have higher accuracy and better stability than other conventional schemes, and thus larger time steps can be used to improve the computational efficiency in 3D case.</p>","PeriodicalId":22001,"journal":{"name":"Studia Geophysica et Geodaetica","volume":"64 4","pages":"465 - 482"},"PeriodicalIF":0.5000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11200-020-1013-1","citationCount":"0","resultStr":"{\"title\":\"Modeling 3D acoustic-wave propagation using modified cuboid-based staggered-grid finite-difference methods with temporal and spatial high-order accuracy\",\"authors\":\"Shigang Xu, Yang Liu\",\"doi\":\"10.1007/s11200-020-1013-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To improve the modeling accuracy and adaptability of traditional temporal second-order staggered-grid finite-difference (SFD) methods for 3D acoustic-wave modeling, we propose a modified time-space-domain temporal and spatial high-order SFD stencil on a cuboid grid. The grid nodes on a double-pyramid stencil and the standard orthogonality stencil are used to approximate temporal and spatial derivatives. This stencil can adopt different grid spacing in each spatial axis, and thus it is more flexible than the existing one with the same grid spacing. Based on the time-space-domain dispersion relation, the high-order FD coefficients are generated by using Taylor expansion and least squares. Numerical analyses and modeling examples demonstrate that our proposed schemes have higher accuracy and better stability than other conventional schemes, and thus larger time steps can be used to improve the computational efficiency in 3D case.</p>\",\"PeriodicalId\":22001,\"journal\":{\"name\":\"Studia Geophysica et Geodaetica\",\"volume\":\"64 4\",\"pages\":\"465 - 482\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s11200-020-1013-1\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Geophysica et Geodaetica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11200-020-1013-1\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geophysica et Geodaetica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11200-020-1013-1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Modeling 3D acoustic-wave propagation using modified cuboid-based staggered-grid finite-difference methods with temporal and spatial high-order accuracy
To improve the modeling accuracy and adaptability of traditional temporal second-order staggered-grid finite-difference (SFD) methods for 3D acoustic-wave modeling, we propose a modified time-space-domain temporal and spatial high-order SFD stencil on a cuboid grid. The grid nodes on a double-pyramid stencil and the standard orthogonality stencil are used to approximate temporal and spatial derivatives. This stencil can adopt different grid spacing in each spatial axis, and thus it is more flexible than the existing one with the same grid spacing. Based on the time-space-domain dispersion relation, the high-order FD coefficients are generated by using Taylor expansion and least squares. Numerical analyses and modeling examples demonstrate that our proposed schemes have higher accuracy and better stability than other conventional schemes, and thus larger time steps can be used to improve the computational efficiency in 3D case.
期刊介绍:
Studia geophysica et geodaetica is an international journal covering all aspects of geophysics, meteorology and climatology, and of geodesy. Published by the Institute of Geophysics of the Academy of Sciences of the Czech Republic, it has a long tradition, being published quarterly since 1956. Studia publishes theoretical and methodological contributions, which are of interest for academia as well as industry. The journal offers fast publication of contributions in regular as well as topical issues.