{"title":"研究了22k金(Au-5.8wt.%Cu-2.5wt.%Ag)与钛合金的时效淬透性","authors":"K. M. Saradesh, K. R. Ravi, G. S. Vinodkumar","doi":"10.1007/s13404-021-00301-9","DOIUrl":null,"url":null,"abstract":"<div><p>The age hardenability of 22 karat gold (Au-5.8wt.%Cu-2.5wt.%Ag) alloyed with Ti at various concentrations (0.5, 0.75, and 1 wt.%) was studied. The addition level of Ti is compensated with Ag to maintain the purity of gold in 22 karat, i.e., 91.75 wt.%. The Ti containing 22 karat gold was prepared by melting Au, Cu, and Ag and adding Ti via Au-6wt.%Ti master alloy. The castings obtained were cold-rolled into thin sheet (90% reduction). Both the cast and cold-rolled sheets were subjected to age hardening treatment (solutionizing and artificial aging). Artificial aging was performed as a function of time at 550 °C to identify the peak aging. At all addition level of Ti, the 22 karat gold responded well to the age hardening treatment. The cold-worked sheet samples showed faster peak aging within 30 min. and higher peak hardness than their cast counterpart. Increasing the Ti concentration increases the peak hardness of both cold-rolled sheet and casting samples. Transmission electron microscopic analysis of the peak aged cold-rolled sheet samples shows uniformly distributed coherent Au<sub>4</sub>Ti precipitates in Au matrix which contribute to the higher hardness.</p></div>","PeriodicalId":581,"journal":{"name":"Gold Bulletin","volume":"54 2","pages":"105 - 113"},"PeriodicalIF":2.1000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13404-021-00301-9.pdf","citationCount":"0","resultStr":"{\"title\":\"The age hardenability of 22 karat gold (Au-5.8wt.%Cu-2.5wt.%Ag) alloyed with titanium\",\"authors\":\"K. M. Saradesh, K. R. Ravi, G. S. Vinodkumar\",\"doi\":\"10.1007/s13404-021-00301-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The age hardenability of 22 karat gold (Au-5.8wt.%Cu-2.5wt.%Ag) alloyed with Ti at various concentrations (0.5, 0.75, and 1 wt.%) was studied. The addition level of Ti is compensated with Ag to maintain the purity of gold in 22 karat, i.e., 91.75 wt.%. The Ti containing 22 karat gold was prepared by melting Au, Cu, and Ag and adding Ti via Au-6wt.%Ti master alloy. The castings obtained were cold-rolled into thin sheet (90% reduction). Both the cast and cold-rolled sheets were subjected to age hardening treatment (solutionizing and artificial aging). Artificial aging was performed as a function of time at 550 °C to identify the peak aging. At all addition level of Ti, the 22 karat gold responded well to the age hardening treatment. The cold-worked sheet samples showed faster peak aging within 30 min. and higher peak hardness than their cast counterpart. Increasing the Ti concentration increases the peak hardness of both cold-rolled sheet and casting samples. Transmission electron microscopic analysis of the peak aged cold-rolled sheet samples shows uniformly distributed coherent Au<sub>4</sub>Ti precipitates in Au matrix which contribute to the higher hardness.</p></div>\",\"PeriodicalId\":581,\"journal\":{\"name\":\"Gold Bulletin\",\"volume\":\"54 2\",\"pages\":\"105 - 113\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13404-021-00301-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gold Bulletin\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13404-021-00301-9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gold Bulletin","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13404-021-00301-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
The age hardenability of 22 karat gold (Au-5.8wt.%Cu-2.5wt.%Ag) alloyed with titanium
The age hardenability of 22 karat gold (Au-5.8wt.%Cu-2.5wt.%Ag) alloyed with Ti at various concentrations (0.5, 0.75, and 1 wt.%) was studied. The addition level of Ti is compensated with Ag to maintain the purity of gold in 22 karat, i.e., 91.75 wt.%. The Ti containing 22 karat gold was prepared by melting Au, Cu, and Ag and adding Ti via Au-6wt.%Ti master alloy. The castings obtained were cold-rolled into thin sheet (90% reduction). Both the cast and cold-rolled sheets were subjected to age hardening treatment (solutionizing and artificial aging). Artificial aging was performed as a function of time at 550 °C to identify the peak aging. At all addition level of Ti, the 22 karat gold responded well to the age hardening treatment. The cold-worked sheet samples showed faster peak aging within 30 min. and higher peak hardness than their cast counterpart. Increasing the Ti concentration increases the peak hardness of both cold-rolled sheet and casting samples. Transmission electron microscopic analysis of the peak aged cold-rolled sheet samples shows uniformly distributed coherent Au4Ti precipitates in Au matrix which contribute to the higher hardness.
期刊介绍:
Gold Bulletin is the premier international peer reviewed journal on the latest science, technology and applications of gold. It includes papers on the latest research advances, state-of-the-art reviews, conference reports, book reviews and highlights of patents and scientific literature. Gold Bulletin does not publish manuscripts covering the snthesis of Gold nanoparticles in the presence of plant extracts or other nature-derived extracts. Gold Bulletin has been published over 40 years as a multidisciplinary journal read by chemists, physicists, engineers, metallurgists, materials scientists, biotechnologists, surface scientists, and nanotechnologists amongst others, both within industry and academia. Gold Bulletin is published in Association with the World Gold Council.