Nidhi Tripathi, L. K. Sahu, Kashyap Patel, Ashwini Kumar, Ravi Yadav
{"title":"印度中西部高止山脉热带常绿森林遗址生物源性挥发性有机化合物的环境空气特征","authors":"Nidhi Tripathi, L. K. Sahu, Kashyap Patel, Ashwini Kumar, Ravi Yadav","doi":"10.1007/s10874-021-09415-y","DOIUrl":null,"url":null,"abstract":"<div><p>Non-methane volatile organic compounds (NMVOCs) play key roles in local and regional atmospheric chemistry as precursors for the production of ozone and secondary organic aerosols. Ambient air C<sub>2</sub>-C<sub>5</sub> NMVOCs were measured at a tropical forest site in the central Western Ghats and urban site of Udaipur in India during the late monsoon period of 2016–17 and 2015, respectively. In the Western Ghats, air samples were collected from the protected Bhagwan Mahaveer Sanctuary. Ethene, propene, and isoprene were the dominant biogenic compounds with mean concentrations of 4.8 ± 2, 1.6 ± 0.66 and 1.05 ± 0.43 ppb, respectively. The concentrations of anthropogenic compounds such as propane and pentane were significantly lower than those of light alkenes. The contributions of ethene and propene among different NMVOCs were ~ 44 and 14%, respectively. However, the contributions of isoprene were highly variable of 3–22%. The tight correlation (r<sup>2</sup> = 0.90) between the mixing ratios of ethene and propene and their ratio indicates their common formation and emission mechanisms. The molar emission ratio of ethene/propene (2.9 ± 0.17 ppb ppb<sup>−1</sup>) was comparable to those measured at other biogenic sites of Asia while higher than those reported for mid-latitude sites. The concentrations of light alkenes and isoprene at the Western Ghats were 4–5 times higher than those measured in an urban environment in the same season. The higher ozone formation potentials and Propylene-Equivalent concentrations of alkenes and isoprene than those of other NMVOCs indicate important implications of biogenic emissions on ozone photochemistry in the forest regions of India.</p><h3>Graphical abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"78 2","pages":"139 - 159"},"PeriodicalIF":3.0000,"publicationDate":"2021-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-021-09415-y","citationCount":"6","resultStr":"{\"title\":\"Ambient air characteristics of biogenic volatile organic compounds at a tropical evergreen forest site in Central Western Ghats of India\",\"authors\":\"Nidhi Tripathi, L. K. Sahu, Kashyap Patel, Ashwini Kumar, Ravi Yadav\",\"doi\":\"10.1007/s10874-021-09415-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Non-methane volatile organic compounds (NMVOCs) play key roles in local and regional atmospheric chemistry as precursors for the production of ozone and secondary organic aerosols. Ambient air C<sub>2</sub>-C<sub>5</sub> NMVOCs were measured at a tropical forest site in the central Western Ghats and urban site of Udaipur in India during the late monsoon period of 2016–17 and 2015, respectively. In the Western Ghats, air samples were collected from the protected Bhagwan Mahaveer Sanctuary. Ethene, propene, and isoprene were the dominant biogenic compounds with mean concentrations of 4.8 ± 2, 1.6 ± 0.66 and 1.05 ± 0.43 ppb, respectively. The concentrations of anthropogenic compounds such as propane and pentane were significantly lower than those of light alkenes. The contributions of ethene and propene among different NMVOCs were ~ 44 and 14%, respectively. However, the contributions of isoprene were highly variable of 3–22%. The tight correlation (r<sup>2</sup> = 0.90) between the mixing ratios of ethene and propene and their ratio indicates their common formation and emission mechanisms. The molar emission ratio of ethene/propene (2.9 ± 0.17 ppb ppb<sup>−1</sup>) was comparable to those measured at other biogenic sites of Asia while higher than those reported for mid-latitude sites. The concentrations of light alkenes and isoprene at the Western Ghats were 4–5 times higher than those measured in an urban environment in the same season. The higher ozone formation potentials and Propylene-Equivalent concentrations of alkenes and isoprene than those of other NMVOCs indicate important implications of biogenic emissions on ozone photochemistry in the forest regions of India.</p><h3>Graphical abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":611,\"journal\":{\"name\":\"Journal of Atmospheric Chemistry\",\"volume\":\"78 2\",\"pages\":\"139 - 159\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2021-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10874-021-09415-y\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric Chemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10874-021-09415-y\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-021-09415-y","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Ambient air characteristics of biogenic volatile organic compounds at a tropical evergreen forest site in Central Western Ghats of India
Non-methane volatile organic compounds (NMVOCs) play key roles in local and regional atmospheric chemistry as precursors for the production of ozone and secondary organic aerosols. Ambient air C2-C5 NMVOCs were measured at a tropical forest site in the central Western Ghats and urban site of Udaipur in India during the late monsoon period of 2016–17 and 2015, respectively. In the Western Ghats, air samples were collected from the protected Bhagwan Mahaveer Sanctuary. Ethene, propene, and isoprene were the dominant biogenic compounds with mean concentrations of 4.8 ± 2, 1.6 ± 0.66 and 1.05 ± 0.43 ppb, respectively. The concentrations of anthropogenic compounds such as propane and pentane were significantly lower than those of light alkenes. The contributions of ethene and propene among different NMVOCs were ~ 44 and 14%, respectively. However, the contributions of isoprene were highly variable of 3–22%. The tight correlation (r2 = 0.90) between the mixing ratios of ethene and propene and their ratio indicates their common formation and emission mechanisms. The molar emission ratio of ethene/propene (2.9 ± 0.17 ppb ppb−1) was comparable to those measured at other biogenic sites of Asia while higher than those reported for mid-latitude sites. The concentrations of light alkenes and isoprene at the Western Ghats were 4–5 times higher than those measured in an urban environment in the same season. The higher ozone formation potentials and Propylene-Equivalent concentrations of alkenes and isoprene than those of other NMVOCs indicate important implications of biogenic emissions on ozone photochemistry in the forest regions of India.
期刊介绍:
The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics:
Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only.
The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere.
Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere.
Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.