啤酒强制陈酿过程中蛋白质-多酚相互作用的表征

IF 2.4 3区 农林科学 Q3 FOOD SCIENCE & TECHNOLOGY Journal of The Institute of Brewing Pub Date : 2020-08-31 DOI:10.1002/jib.623
Sisse Jongberg, Mogens L. Andersen, Marianne N. Lund
{"title":"啤酒强制陈酿过程中蛋白质-多酚相互作用的表征","authors":"Sisse Jongberg,&nbsp;Mogens L. Andersen,&nbsp;Marianne N. Lund","doi":"10.1002/jib.623","DOIUrl":null,"url":null,"abstract":"<p>Proteins and proteinaceous material were extracted by acetone precipitation of beer that had undergone forced aging through 0 (control), 5 (medium) or 10 (high) heat/chill cycles (60°C 48h/0°C 24h). Size exclusion chromatography analysis of the crude beer extract showed that forced ageing led to a significant increase in binding of phenolic compounds to Protein Z and especially to lipid transfer protein 1 (LTP1). Protein-polyphenol conjugates were also present in high molecular weight (&gt; 100 kDa) and low molecular weight fractions (&lt; 5 kDa), but these conjugates were already present in the fresh beer and were not affected by the forced aging. Treatment of the crude beer extract with sulphite (2 M) dissociated the protein-polyphenol bindings in LTP1 and Protein Z that had been generated during medium forced aging. Identification and quantification of the free, the non-covalently, and the covalently bound phenolic compounds were performed by UHPLC after extraction by methanol, acetic acid, and sulphite, respectively. The amounts of vanillic acid and caffeic acid decreased in the free polyphenol fraction, indicating binding to proteins during forced aging. Epicatechin and quercetin-3-O-glucoside were found to be non-covalently bound during forced aging. Finally, gallic acid, epicatechin, protocatechuic acid, and astragalin were found to be covalently bound already in the fresh beer. © 2020 The Institute of Brewing &amp; Distilling</p>","PeriodicalId":17279,"journal":{"name":"Journal of The Institute of Brewing","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/jib.623","citationCount":"9","resultStr":"{\"title\":\"Characterisation of protein-polyphenol interactions in beer during forced aging\",\"authors\":\"Sisse Jongberg,&nbsp;Mogens L. Andersen,&nbsp;Marianne N. Lund\",\"doi\":\"10.1002/jib.623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Proteins and proteinaceous material were extracted by acetone precipitation of beer that had undergone forced aging through 0 (control), 5 (medium) or 10 (high) heat/chill cycles (60°C 48h/0°C 24h). Size exclusion chromatography analysis of the crude beer extract showed that forced ageing led to a significant increase in binding of phenolic compounds to Protein Z and especially to lipid transfer protein 1 (LTP1). Protein-polyphenol conjugates were also present in high molecular weight (&gt; 100 kDa) and low molecular weight fractions (&lt; 5 kDa), but these conjugates were already present in the fresh beer and were not affected by the forced aging. Treatment of the crude beer extract with sulphite (2 M) dissociated the protein-polyphenol bindings in LTP1 and Protein Z that had been generated during medium forced aging. Identification and quantification of the free, the non-covalently, and the covalently bound phenolic compounds were performed by UHPLC after extraction by methanol, acetic acid, and sulphite, respectively. The amounts of vanillic acid and caffeic acid decreased in the free polyphenol fraction, indicating binding to proteins during forced aging. Epicatechin and quercetin-3-O-glucoside were found to be non-covalently bound during forced aging. Finally, gallic acid, epicatechin, protocatechuic acid, and astragalin were found to be covalently bound already in the fresh beer. © 2020 The Institute of Brewing &amp; Distilling</p>\",\"PeriodicalId\":17279,\"journal\":{\"name\":\"Journal of The Institute of Brewing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2020-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/jib.623\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Institute of Brewing\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jib.623\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Institute of Brewing","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jib.623","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 9

摘要

通过0(对照)、5(中)或10(高)热/冷循环(60°C 48h/0°C 24h)对啤酒进行强制老化,丙酮沉淀提取蛋白质和蛋白质物质。粗啤酒提取物的尺寸排除色谱分析表明,强迫老化导致酚类化合物与蛋白Z的结合显著增加,特别是与脂质转移蛋白1 (LTP1)的结合。蛋白质-多酚偶联物也存在于高分子量(>100 kDa)和低分子量组分(<5 kDa),但这些共轭物已经存在于新鲜啤酒中,不受强制陈酿的影响。用亚硫酸盐(2 M)处理粗啤酒提取物可以解离在中等强制老化过程中产生的LTP1和Protein Z中的蛋白质-多酚结合。甲醇提取、乙酸提取、亚硫酸盐提取后,分别用UHPLC对游离、非共价和共价结合的酚类化合物进行鉴定和定量。游离多酚部分中香草酸和咖啡酸的含量下降,表明在强迫老化过程中与蛋白质结合。在强迫衰老过程中发现表儿茶素和槲皮素-3- o -葡萄糖苷是非共价结合的。最后,在新鲜啤酒中发现没食子酸、表儿茶素、原儿茶酸和黄芪苷已共价结合。©2020 The Institute of Brewing;蒸馏
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterisation of protein-polyphenol interactions in beer during forced aging

Proteins and proteinaceous material were extracted by acetone precipitation of beer that had undergone forced aging through 0 (control), 5 (medium) or 10 (high) heat/chill cycles (60°C 48h/0°C 24h). Size exclusion chromatography analysis of the crude beer extract showed that forced ageing led to a significant increase in binding of phenolic compounds to Protein Z and especially to lipid transfer protein 1 (LTP1). Protein-polyphenol conjugates were also present in high molecular weight (> 100 kDa) and low molecular weight fractions (< 5 kDa), but these conjugates were already present in the fresh beer and were not affected by the forced aging. Treatment of the crude beer extract with sulphite (2 M) dissociated the protein-polyphenol bindings in LTP1 and Protein Z that had been generated during medium forced aging. Identification and quantification of the free, the non-covalently, and the covalently bound phenolic compounds were performed by UHPLC after extraction by methanol, acetic acid, and sulphite, respectively. The amounts of vanillic acid and caffeic acid decreased in the free polyphenol fraction, indicating binding to proteins during forced aging. Epicatechin and quercetin-3-O-glucoside were found to be non-covalently bound during forced aging. Finally, gallic acid, epicatechin, protocatechuic acid, and astragalin were found to be covalently bound already in the fresh beer. © 2020 The Institute of Brewing & Distilling

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Institute of Brewing
Journal of The Institute of Brewing 工程技术-食品科技
CiteScore
6.20
自引率
7.70%
发文量
25
审稿时长
6 months
期刊介绍: The Journal has been publishing original research for over 125 years relating to brewing, fermentation, distilling, raw materials and by-products. Research ranges from the fundamental to applied and is from universities, research institutes and industry laboratories worldwide. The scope of the Journal is cereal based beers, wines and spirits. Manuscripts on cider may also be submitted as they have been since 1911. Manuscripts on fruit based wines and spirits are not within the scope of the Journal of the Institute of Brewing.
期刊最新文献
Effective strategies to maximise dextrin formation in brewing The lowering of gushing potential from hydrophobin by the use of proteolytic enzymes Tracking dry gin volatile organic compounds over distillation: a time course study Modelling of beer sensory staleness based on flavour instability parameters Untargeted metabolomic profiling of 100% malt beers versus those containing barley adjunct
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1