胶原基生物材料用于软骨修复的新策略:从结构认知到功能赋能

Xiaoyue Yu, Haiping Zhang, Yiliang Miao, Shanbai Xiong, Yang Hu
{"title":"胶原基生物材料用于软骨修复的新策略:从结构认知到功能赋能","authors":"Xiaoyue Yu,&nbsp;Haiping Zhang,&nbsp;Yiliang Miao,&nbsp;Shanbai Xiong,&nbsp;Yang Hu","doi":"10.1186/s42825-022-00085-4","DOIUrl":null,"url":null,"abstract":"<div><p>Collagen, characteristic in biomimetic composition and hierarchical structure, boasts a huge potential in repairing cartilage defect due to its extraordinary bioactivities and regulated physicochemical properties, such as low immunogenicity, biocompatibility and controllable degradation, which promotes the cell adhesion, migration and proliferation. Therefore, collagen-based biomaterial has been explored as porous scaffolds or functional coatings in cell-free scaffold and tissue engineering strategy for cartilage repairing. Among those forming technologies, freeze-dry is frequently used with special modifications while 3D-printing and electrospinning serve as the structure-controller in a more precise way. Besides, appropriate cross-linking treatment and incorporation with bioactive substance generally help the collagen-based biomaterials to meet the physicochemical requirement in the defect site and strengthen the repairing performance. Furthermore, comprehensive evaluations on the repair effects of biomaterials are sorted out in terms of in vitro, in vivo and clinical assessments, focusing on the morphology observation, characteristic production and critical gene expression. Finally, the challenge of biomaterial-based therapy for cartilage defect repairing was summarized, which is, the adaption to the highly complex structure and functional difference of cartilage.</p><h3>Graphical abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":640,"journal":{"name":"Journal of Leather Science and Engineering","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://JLSE.SpringerOpen.com/counter/pdf/10.1186/s42825-022-00085-4","citationCount":"15","resultStr":"{\"title\":\"Recent strategies of collagen-based biomaterials for cartilage repair: from structure cognition to function endowment\",\"authors\":\"Xiaoyue Yu,&nbsp;Haiping Zhang,&nbsp;Yiliang Miao,&nbsp;Shanbai Xiong,&nbsp;Yang Hu\",\"doi\":\"10.1186/s42825-022-00085-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Collagen, characteristic in biomimetic composition and hierarchical structure, boasts a huge potential in repairing cartilage defect due to its extraordinary bioactivities and regulated physicochemical properties, such as low immunogenicity, biocompatibility and controllable degradation, which promotes the cell adhesion, migration and proliferation. Therefore, collagen-based biomaterial has been explored as porous scaffolds or functional coatings in cell-free scaffold and tissue engineering strategy for cartilage repairing. Among those forming technologies, freeze-dry is frequently used with special modifications while 3D-printing and electrospinning serve as the structure-controller in a more precise way. Besides, appropriate cross-linking treatment and incorporation with bioactive substance generally help the collagen-based biomaterials to meet the physicochemical requirement in the defect site and strengthen the repairing performance. Furthermore, comprehensive evaluations on the repair effects of biomaterials are sorted out in terms of in vitro, in vivo and clinical assessments, focusing on the morphology observation, characteristic production and critical gene expression. Finally, the challenge of biomaterial-based therapy for cartilage defect repairing was summarized, which is, the adaption to the highly complex structure and functional difference of cartilage.</p><h3>Graphical abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":640,\"journal\":{\"name\":\"Journal of Leather Science and Engineering\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://JLSE.SpringerOpen.com/counter/pdf/10.1186/s42825-022-00085-4\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Leather Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42825-022-00085-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Leather Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42825-022-00085-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

胶原具有仿生学成分和分层结构的特点,具有特殊的生物活性和可调节的理化性质,如低免疫原性、生物相容性和可控制降解,促进细胞粘附、迁移和增殖,在修复软骨缺损方面具有巨大的潜力。因此,胶原基生物材料作为多孔支架或功能涂层在无细胞支架和组织工程中用于软骨修复的策略已被探索。在这些成型技术中,冻干技术经常被使用并进行特殊修改,而3d打印和静电纺丝技术则是更精确的结构控制器。此外,适当的交联处理和掺入生物活性物质一般有助于胶原基生物材料满足缺损部位的理化要求,增强修复性能。并从体外、体内、临床等方面对生物材料的修复效果进行了综合评价,重点从形态观察、特征产生、关键基因表达等方面进行了综述。最后总结了基于生物材料的软骨缺损修复所面临的挑战,即如何适应软骨高度复杂的结构和功能差异。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent strategies of collagen-based biomaterials for cartilage repair: from structure cognition to function endowment

Collagen, characteristic in biomimetic composition and hierarchical structure, boasts a huge potential in repairing cartilage defect due to its extraordinary bioactivities and regulated physicochemical properties, such as low immunogenicity, biocompatibility and controllable degradation, which promotes the cell adhesion, migration and proliferation. Therefore, collagen-based biomaterial has been explored as porous scaffolds or functional coatings in cell-free scaffold and tissue engineering strategy for cartilage repairing. Among those forming technologies, freeze-dry is frequently used with special modifications while 3D-printing and electrospinning serve as the structure-controller in a more precise way. Besides, appropriate cross-linking treatment and incorporation with bioactive substance generally help the collagen-based biomaterials to meet the physicochemical requirement in the defect site and strengthen the repairing performance. Furthermore, comprehensive evaluations on the repair effects of biomaterials are sorted out in terms of in vitro, in vivo and clinical assessments, focusing on the morphology observation, characteristic production and critical gene expression. Finally, the challenge of biomaterial-based therapy for cartilage defect repairing was summarized, which is, the adaption to the highly complex structure and functional difference of cartilage.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Leather Science and Engineering
Journal of Leather Science and Engineering 工程技术-材料科学:综合
CiteScore
12.80
自引率
0.00%
发文量
29
期刊最新文献
A comprehensive review of cellulose nanomaterials for adsorption of wastewater pollutants: focus on dye and heavy metal Cr adsorption and oil/water separation Correction: an exploration of enhancing thermal stability of leather by hydrophilicity regulation: effect of hydrophilicity of phenolic syntan Engineering collagen-based biomaterials for cardiovascular medicine Fabrication of PBAT/lignin composite foam materials with excellent foaming performance and mechanical properties via grafting esterification and twin-screw melting free radical polymerization Improving the crosslinking of collagen casing and glutaraldehyde by facilitating the formation of conjugate structure via pH
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1