减少切萨皮克湾营养物和沉积物负荷的进展:三十年监测数据及其对恢复复杂生态系统的影响

IF 6.8 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Wiley Interdisciplinary Reviews: Water Pub Date : 2023-06-06 DOI:10.1002/wat2.1671
Qian Zhang, J. Blomquist, R. Fanelli, Jennifer L. Keisman, D. Moyer, M. Langland
{"title":"减少切萨皮克湾营养物和沉积物负荷的进展:三十年监测数据及其对恢复复杂生态系统的影响","authors":"Qian Zhang, J. Blomquist, R. Fanelli, Jennifer L. Keisman, D. Moyer, M. Langland","doi":"10.1002/wat2.1671","DOIUrl":null,"url":null,"abstract":"For over three decades, Chesapeake Bay (USA) has been the focal point of a coordinated restoration strategy implemented through a partnership of governmental and nongovernmental entities, which has been a classical model for coastal restoration worldwide. This synthesis aims to provide resource managers and estuarine scientists with a clearer perspective of the magnitude of changes in water quality within the Bay watershed, including nitrogen (N), phosphorus (P), and sediment for the River Input Monitoring (RIM) watershed and the unmonitored below‐RIM watershed. The flow‐normalized N load from the RIM watershed has declined in the period of 1985–2017, but P and sediment loads have lacked progress. Reductions of riverine N are largely driven by reductions of point sources and atmospheric deposition. Future reductions will require significant progress in managing agricultural nonpoint sources. The below‐RIM watershed, which comprises a disproportionately high fraction of inputs to the Bay, has shown long‐term declines in major sources, including point sources (N and P), atmospheric deposition (N), manure (N and P) and fertilizer (P), based on a combination of monitoring and modeling assessments. To date, the Bay cleanup efforts have achieved some progress toward reducing nutrients from the watershed, which have resulted in improving water quality in the estuary. However, further reductions are critical to achieve the Chesapeake Bay Total Maximum Daily Load goals, and emerging challenges due to Conowingo Reservoir, legacy nutrients, climate change, and population growth should be considered. Continued monitoring, modeling, and assessment are critically important for informing the restoration of this complex ecosystem.","PeriodicalId":23774,"journal":{"name":"Wiley Interdisciplinary Reviews: Water","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Progress in reducing nutrient and sediment loads to Chesapeake Bay: Three decades of monitoring data and implications for restoring complex ecosystems\",\"authors\":\"Qian Zhang, J. Blomquist, R. Fanelli, Jennifer L. Keisman, D. Moyer, M. Langland\",\"doi\":\"10.1002/wat2.1671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For over three decades, Chesapeake Bay (USA) has been the focal point of a coordinated restoration strategy implemented through a partnership of governmental and nongovernmental entities, which has been a classical model for coastal restoration worldwide. This synthesis aims to provide resource managers and estuarine scientists with a clearer perspective of the magnitude of changes in water quality within the Bay watershed, including nitrogen (N), phosphorus (P), and sediment for the River Input Monitoring (RIM) watershed and the unmonitored below‐RIM watershed. The flow‐normalized N load from the RIM watershed has declined in the period of 1985–2017, but P and sediment loads have lacked progress. Reductions of riverine N are largely driven by reductions of point sources and atmospheric deposition. Future reductions will require significant progress in managing agricultural nonpoint sources. The below‐RIM watershed, which comprises a disproportionately high fraction of inputs to the Bay, has shown long‐term declines in major sources, including point sources (N and P), atmospheric deposition (N), manure (N and P) and fertilizer (P), based on a combination of monitoring and modeling assessments. To date, the Bay cleanup efforts have achieved some progress toward reducing nutrients from the watershed, which have resulted in improving water quality in the estuary. However, further reductions are critical to achieve the Chesapeake Bay Total Maximum Daily Load goals, and emerging challenges due to Conowingo Reservoir, legacy nutrients, climate change, and population growth should be considered. Continued monitoring, modeling, and assessment are critically important for informing the restoration of this complex ecosystem.\",\"PeriodicalId\":23774,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews: Water\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews: Water\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/wat2.1671\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Water","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/wat2.1671","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

30多年来,切萨皮克湾(美国)一直是政府和非政府实体合作实施的协调恢复战略的焦点,这已成为全球沿海恢复的经典模式。这一综合旨在为资源管理者和河口科学家提供一个更清晰的视角,了解海湾流域水质的变化幅度,包括河流输入监测(RIM)流域和未监测的流域的氮(N)、磷(P)和沉积物。1985-2017年,RIM流域流量标准化氮负荷呈下降趋势,但磷和泥沙负荷没有变化。河流氮的减少主要是由点源和大气沉降的减少所驱动的。未来的减排需要在管理农业非点源方面取得重大进展。根据监测和建模评估的综合结果,低于‐RIM的流域,其主要来源,包括点源(N和P)、大气沉降(N)、粪肥(N和P)和肥料(P)的长期下降。迄今为止,海湾清理工作在减少流域营养物质方面取得了一些进展,这导致了河口水质的改善。然而,进一步减少对实现切萨皮克湾总最大日负荷目标至关重要,同时应考虑Conowingo水库、遗留营养物质、气候变化和人口增长带来的新挑战。持续的监测、建模和评估对这一复杂生态系统的恢复至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Progress in reducing nutrient and sediment loads to Chesapeake Bay: Three decades of monitoring data and implications for restoring complex ecosystems
For over three decades, Chesapeake Bay (USA) has been the focal point of a coordinated restoration strategy implemented through a partnership of governmental and nongovernmental entities, which has been a classical model for coastal restoration worldwide. This synthesis aims to provide resource managers and estuarine scientists with a clearer perspective of the magnitude of changes in water quality within the Bay watershed, including nitrogen (N), phosphorus (P), and sediment for the River Input Monitoring (RIM) watershed and the unmonitored below‐RIM watershed. The flow‐normalized N load from the RIM watershed has declined in the period of 1985–2017, but P and sediment loads have lacked progress. Reductions of riverine N are largely driven by reductions of point sources and atmospheric deposition. Future reductions will require significant progress in managing agricultural nonpoint sources. The below‐RIM watershed, which comprises a disproportionately high fraction of inputs to the Bay, has shown long‐term declines in major sources, including point sources (N and P), atmospheric deposition (N), manure (N and P) and fertilizer (P), based on a combination of monitoring and modeling assessments. To date, the Bay cleanup efforts have achieved some progress toward reducing nutrients from the watershed, which have resulted in improving water quality in the estuary. However, further reductions are critical to achieve the Chesapeake Bay Total Maximum Daily Load goals, and emerging challenges due to Conowingo Reservoir, legacy nutrients, climate change, and population growth should be considered. Continued monitoring, modeling, and assessment are critically important for informing the restoration of this complex ecosystem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wiley Interdisciplinary Reviews: Water
Wiley Interdisciplinary Reviews: Water Environmental Science-Ecology
CiteScore
16.60
自引率
3.70%
发文量
56
期刊介绍: The WIREs series is truly unique, blending the best aspects of encyclopedic reference works and review journals into a dynamic online format. These remarkable resources foster a research culture that transcends disciplinary boundaries, all while upholding the utmost scientific and presentation excellence. However, they go beyond traditional publications and are, in essence, ever-evolving databases of the latest cutting-edge reviews.
期刊最新文献
Holocene sedimentary history of the Silala River (Antofagasta Region, Chile) MAD Water: Integrating Modular, Adaptive, and Decentralized Approaches for Water Security in the Climate Change Era. Advances and gaps in the science and practice of impact‐based forecasting of droughts The geological evolution of the Silala River basin, Central Andes Hydrogeological characterization of the Silala River catchment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1