{"title":"基于Cauchy积分的边界元法求解圆上线性二次型边界控制问题","authors":"Goong Chen, Chiang-Pu Chen, I. Aronov","doi":"10.1002/OCA.4660090109","DOIUrl":null,"url":null,"abstract":"For certain types of elliptic boundary control problems, the boundary element method has considerable advantage over the traditional finite element or finite difference methods because of the reduction of dimensionality in computations. In this paper we examine a variant of such boundary integral methods based on Cauchy integrals. The cost functional here contains only finitely many quadratic terms related to sensory data at those finite interior points. We see that the numerical efficiency of this approach hinges largely on the complexity of the inverse of a certain boundary integral operator. In the case of a circle, such an inverse is readily obtainable and entire computations require only a small effort to yield useful numerical information about the optimal control. Other general situations are also discussed.","PeriodicalId":54672,"journal":{"name":"Optimal Control Applications & Methods","volume":"9 1","pages":"93-100"},"PeriodicalIF":2.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/OCA.4660090109","citationCount":"0","resultStr":"{\"title\":\"A boundary element method based on Cauchy integrals for some linear quadratic boundary control problems on a circle\",\"authors\":\"Goong Chen, Chiang-Pu Chen, I. Aronov\",\"doi\":\"10.1002/OCA.4660090109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For certain types of elliptic boundary control problems, the boundary element method has considerable advantage over the traditional finite element or finite difference methods because of the reduction of dimensionality in computations. In this paper we examine a variant of such boundary integral methods based on Cauchy integrals. The cost functional here contains only finitely many quadratic terms related to sensory data at those finite interior points. We see that the numerical efficiency of this approach hinges largely on the complexity of the inverse of a certain boundary integral operator. In the case of a circle, such an inverse is readily obtainable and entire computations require only a small effort to yield useful numerical information about the optimal control. Other general situations are also discussed.\",\"PeriodicalId\":54672,\"journal\":{\"name\":\"Optimal Control Applications & Methods\",\"volume\":\"9 1\",\"pages\":\"93-100\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2007-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/OCA.4660090109\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimal Control Applications & Methods\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/OCA.4660090109\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications & Methods","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/OCA.4660090109","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A boundary element method based on Cauchy integrals for some linear quadratic boundary control problems on a circle
For certain types of elliptic boundary control problems, the boundary element method has considerable advantage over the traditional finite element or finite difference methods because of the reduction of dimensionality in computations. In this paper we examine a variant of such boundary integral methods based on Cauchy integrals. The cost functional here contains only finitely many quadratic terms related to sensory data at those finite interior points. We see that the numerical efficiency of this approach hinges largely on the complexity of the inverse of a certain boundary integral operator. In the case of a circle, such an inverse is readily obtainable and entire computations require only a small effort to yield useful numerical information about the optimal control. Other general situations are also discussed.
期刊介绍:
Optimal Control Applications & Methods provides a forum for papers on the full range of optimal and optimization based control theory and related control design methods. The aim is to encourage new developments in control theory and design methodologies that will lead to real advances in control applications. Papers are also encouraged on the development, comparison and testing of computational algorithms for solving optimal control and optimization problems. The scope also includes papers on optimal estimation and filtering methods which have control related applications. Finally, it will provide a focus for interesting optimal control design studies and report real applications experience covering problems in implementation and robustness.