Sarvesh Shukla, Atul Sharma, Amit Agrawal, Rajneesh Bhardwaj
{"title":"受行波表面波动影响的水翼流动:表面波与波数相位差的影响","authors":"Sarvesh Shukla, Atul Sharma, Amit Agrawal, Rajneesh Bhardwaj","doi":"10.1007/s00162-023-00646-1","DOIUrl":null,"url":null,"abstract":"<p>Flow around a traveling wave-based surface-undulating NACA0012 hydrofoil has been numerically studied. In particular, we determine the effect of the phase speed of the wave, the phase difference between the waves traveling on the top and bottom surfaces, and the wave number on flow dynamics around and behind the hydrofoil and propulsive performance. The flow results in a vortex sheet or a street behind the hydrofoil, where oppositely signed vortices are aligned in either forward or reverse direction. Apart from these, side vortices start forming on either side of the hydrofoil at a higher wave number. The phase difference analysis between the upper and lower surface undulation reveals the configuration better for the hydrofoil’s lateral and longitudinal stability. The hydrofoil can shift from high thrust to high lateral force configuration by changing the phase difference between waves on the top and bottom surfaces. Thrust increases with an increase in the wave number, and a threshold value of phase speed and wave number exists where the drag-to-thrust transition happens. The added mass force-based scaling analysis corroborates with the simulated results.</p>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"37 3","pages":"319 - 336"},"PeriodicalIF":2.2000,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00162-023-00646-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Flow over a hydrofoil subjected to traveling wave-based surface undulation: effect of phase difference between surface waves and wave number\",\"authors\":\"Sarvesh Shukla, Atul Sharma, Amit Agrawal, Rajneesh Bhardwaj\",\"doi\":\"10.1007/s00162-023-00646-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flow around a traveling wave-based surface-undulating NACA0012 hydrofoil has been numerically studied. In particular, we determine the effect of the phase speed of the wave, the phase difference between the waves traveling on the top and bottom surfaces, and the wave number on flow dynamics around and behind the hydrofoil and propulsive performance. The flow results in a vortex sheet or a street behind the hydrofoil, where oppositely signed vortices are aligned in either forward or reverse direction. Apart from these, side vortices start forming on either side of the hydrofoil at a higher wave number. The phase difference analysis between the upper and lower surface undulation reveals the configuration better for the hydrofoil’s lateral and longitudinal stability. The hydrofoil can shift from high thrust to high lateral force configuration by changing the phase difference between waves on the top and bottom surfaces. Thrust increases with an increase in the wave number, and a threshold value of phase speed and wave number exists where the drag-to-thrust transition happens. The added mass force-based scaling analysis corroborates with the simulated results.</p>\",\"PeriodicalId\":795,\"journal\":{\"name\":\"Theoretical and Computational Fluid Dynamics\",\"volume\":\"37 3\",\"pages\":\"319 - 336\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00162-023-00646-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Computational Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00162-023-00646-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00162-023-00646-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Flow over a hydrofoil subjected to traveling wave-based surface undulation: effect of phase difference between surface waves and wave number
Flow around a traveling wave-based surface-undulating NACA0012 hydrofoil has been numerically studied. In particular, we determine the effect of the phase speed of the wave, the phase difference between the waves traveling on the top and bottom surfaces, and the wave number on flow dynamics around and behind the hydrofoil and propulsive performance. The flow results in a vortex sheet or a street behind the hydrofoil, where oppositely signed vortices are aligned in either forward or reverse direction. Apart from these, side vortices start forming on either side of the hydrofoil at a higher wave number. The phase difference analysis between the upper and lower surface undulation reveals the configuration better for the hydrofoil’s lateral and longitudinal stability. The hydrofoil can shift from high thrust to high lateral force configuration by changing the phase difference between waves on the top and bottom surfaces. Thrust increases with an increase in the wave number, and a threshold value of phase speed and wave number exists where the drag-to-thrust transition happens. The added mass force-based scaling analysis corroborates with the simulated results.
期刊介绍:
Theoretical and Computational Fluid Dynamics provides a forum for the cross fertilization of ideas, tools and techniques across all disciplines in which fluid flow plays a role. The focus is on aspects of fluid dynamics where theory and computation are used to provide insights and data upon which solid physical understanding is revealed. We seek research papers, invited review articles, brief communications, letters and comments addressing flow phenomena of relevance to aeronautical, geophysical, environmental, material, mechanical and life sciences. Papers of a purely algorithmic, experimental or engineering application nature, and papers without significant new physical insights, are outside the scope of this journal. For computational work, authors are responsible for ensuring that any artifacts of discretization and/or implementation are sufficiently controlled such that the numerical results unambiguously support the conclusions drawn. Where appropriate, and to the extent possible, such papers should either include or reference supporting documentation in the form of verification and validation studies.