Ya. V. Lomovskaya, M. I. Kobyakova, A. S. Senotov, I. S. Fadeeva, A. I. Lomovsky, K. S. Krasnov, D. Yu. Shtatnova, V. S. Akatov, R. S. Fadeev
{"title":"髓系分化通过降低DR4和DR5受体的表达增加白血病细胞对trail诱导的死亡的抵抗力","authors":"Ya. V. Lomovskaya, M. I. Kobyakova, A. S. Senotov, I. S. Fadeeva, A. I. Lomovsky, K. S. Krasnov, D. Yu. Shtatnova, V. S. Akatov, R. S. Fadeev","doi":"10.1134/S1990747822060101","DOIUrl":null,"url":null,"abstract":"<p>The study of the mechanisms of resistance of tumor cells to TRAIL-induced death remains an urgent task since this cytokine is an important highly selective molecular effector of antitumor immunity. Our study showed that human leukemia cells THP-1, HL-60, and K562 increased their resistance to TRAIL-induced death in vitro as a result of induction of myeloid differentiation in them by exogenous factors in all directions of myelopoiesis, except for erythroid, by reducing the expression of DR4 and DR5 receptors on the cell surface. It was also found that ONC 201, tunicamycin, and SAHA (hydroxamic acid suberoylanilide), capable of causing an increase in the expression of DR5 in leukemic cells, suppressed their TRAIL resistance induced by differentiation factors. The results obtained are of interest for the development of drugs and strategies to improve the effectiveness of the treatment of myeloid leukemia.</p>","PeriodicalId":484,"journal":{"name":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","volume":"17 1","pages":"43 - 57"},"PeriodicalIF":1.1000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Myeloid Differentiation Increases Resistance of Leukemic Cells to TRAIL-Induced Death by Reducing the Expression of DR4 and DR5 Receptors\",\"authors\":\"Ya. V. Lomovskaya, M. I. Kobyakova, A. S. Senotov, I. S. Fadeeva, A. I. Lomovsky, K. S. Krasnov, D. Yu. Shtatnova, V. S. Akatov, R. S. Fadeev\",\"doi\":\"10.1134/S1990747822060101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The study of the mechanisms of resistance of tumor cells to TRAIL-induced death remains an urgent task since this cytokine is an important highly selective molecular effector of antitumor immunity. Our study showed that human leukemia cells THP-1, HL-60, and K562 increased their resistance to TRAIL-induced death in vitro as a result of induction of myeloid differentiation in them by exogenous factors in all directions of myelopoiesis, except for erythroid, by reducing the expression of DR4 and DR5 receptors on the cell surface. It was also found that ONC 201, tunicamycin, and SAHA (hydroxamic acid suberoylanilide), capable of causing an increase in the expression of DR5 in leukemic cells, suppressed their TRAIL resistance induced by differentiation factors. The results obtained are of interest for the development of drugs and strategies to improve the effectiveness of the treatment of myeloid leukemia.</p>\",\"PeriodicalId\":484,\"journal\":{\"name\":\"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology\",\"volume\":\"17 1\",\"pages\":\"43 - 57\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1990747822060101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1134/S1990747822060101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Myeloid Differentiation Increases Resistance of Leukemic Cells to TRAIL-Induced Death by Reducing the Expression of DR4 and DR5 Receptors
The study of the mechanisms of resistance of tumor cells to TRAIL-induced death remains an urgent task since this cytokine is an important highly selective molecular effector of antitumor immunity. Our study showed that human leukemia cells THP-1, HL-60, and K562 increased their resistance to TRAIL-induced death in vitro as a result of induction of myeloid differentiation in them by exogenous factors in all directions of myelopoiesis, except for erythroid, by reducing the expression of DR4 and DR5 receptors on the cell surface. It was also found that ONC 201, tunicamycin, and SAHA (hydroxamic acid suberoylanilide), capable of causing an increase in the expression of DR5 in leukemic cells, suppressed their TRAIL resistance induced by differentiation factors. The results obtained are of interest for the development of drugs and strategies to improve the effectiveness of the treatment of myeloid leukemia.
期刊介绍:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology is an international peer reviewed journal that publishes original articles on physical, chemical, and molecular mechanisms that underlie basic properties of biological membranes and mediate membrane-related cellular functions. The primary topics of the journal are membrane structure, mechanisms of membrane transport, bioenergetics and photobiology, intracellular signaling as well as membrane aspects of cell biology, immunology, and medicine. The journal is multidisciplinary and gives preference to those articles that employ a variety of experimental approaches, basically in biophysics but also in biochemistry, cytology, and molecular biology. The journal publishes articles that strive for unveiling membrane and cellular functions through innovative theoretical models and computer simulations.