Shishir Kumar Singh, S. R. Radhakrishnan, Jaswant, Sumit Kumar Mishra, Devesh Kumar Shukla, Ashish Ranjan, Chhemendra Sharma
{"title":"利用拉曼激光雷达系统研究印度西喜马拉雅地区palampur高海拔站气溶胶光学特性的变化","authors":"Shishir Kumar Singh, S. R. Radhakrishnan, Jaswant, Sumit Kumar Mishra, Devesh Kumar Shukla, Ashish Ranjan, Chhemendra Sharma","doi":"10.1007/s10874-022-09432-5","DOIUrl":null,"url":null,"abstract":"<div><p>A Raman lidar system was operated along with the Microtops sunphotometer measurements to carry out the study of the variation of the optical properties of aerosols over Palampur (32.11° N and 76.53° E), India from 17th April to 11th May 2019. The lidar system is furnished with Raman (N<sub>2</sub>) channel and depolarization channel allowing independent measurement of Lidar Ratio (LR) and linear depolarization ratio. The study reveals that the majority of the aerosols approximately were restricted within the planetary boundary layer (PBL) and very less loading was present in the free troposphere over the study location. The particle loading over the study period was found to be very less with aerosol backscatter coefficient (at 355 nm) ranging from ∼0.13 Mm<sup>−1</sup>sr<sup>−1</sup> to ∼7.25 Mm<sup>−1</sup>sr<sup>−1</sup> with mean value of 2.67 ± 0.82 Mm<sup>−1</sup>sr<sup>−1</sup> and it is well supplemented by the mean aerosol optical depth (AOD) of 0.37 ± 0.13 obtained from Microtops Sunphotometer. The average lidar ratio values for 0-1 km altitude (L1) 72 ± 13sr, for 1-2 km (L2) altitude 55 ± 8sr, for 2-3 km (L3) 54 ± 15sr were observed as suggesting dominance of the biomass burning aerosols and anthropogenic aerosols. The particle depolarization ratio (355 nm) values were found from approximately 4.8 ± 2.7% to 11.5 ± 1.9% with the mean value of 7 ± 1.3% suggesting the presence of non-spherical particles. To trace the sources of the pollution, we derived the HYSPLIT trajectory which shows the majority of the movement was from local sources.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"79 2","pages":"117 - 139"},"PeriodicalIF":3.0000,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Study of variation of aerosol optical properties over a high altitude station in Indian Western Himalayan region, palampur using raman lidar system\",\"authors\":\"Shishir Kumar Singh, S. R. Radhakrishnan, Jaswant, Sumit Kumar Mishra, Devesh Kumar Shukla, Ashish Ranjan, Chhemendra Sharma\",\"doi\":\"10.1007/s10874-022-09432-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A Raman lidar system was operated along with the Microtops sunphotometer measurements to carry out the study of the variation of the optical properties of aerosols over Palampur (32.11° N and 76.53° E), India from 17th April to 11th May 2019. The lidar system is furnished with Raman (N<sub>2</sub>) channel and depolarization channel allowing independent measurement of Lidar Ratio (LR) and linear depolarization ratio. The study reveals that the majority of the aerosols approximately were restricted within the planetary boundary layer (PBL) and very less loading was present in the free troposphere over the study location. The particle loading over the study period was found to be very less with aerosol backscatter coefficient (at 355 nm) ranging from ∼0.13 Mm<sup>−1</sup>sr<sup>−1</sup> to ∼7.25 Mm<sup>−1</sup>sr<sup>−1</sup> with mean value of 2.67 ± 0.82 Mm<sup>−1</sup>sr<sup>−1</sup> and it is well supplemented by the mean aerosol optical depth (AOD) of 0.37 ± 0.13 obtained from Microtops Sunphotometer. The average lidar ratio values for 0-1 km altitude (L1) 72 ± 13sr, for 1-2 km (L2) altitude 55 ± 8sr, for 2-3 km (L3) 54 ± 15sr were observed as suggesting dominance of the biomass burning aerosols and anthropogenic aerosols. The particle depolarization ratio (355 nm) values were found from approximately 4.8 ± 2.7% to 11.5 ± 1.9% with the mean value of 7 ± 1.3% suggesting the presence of non-spherical particles. To trace the sources of the pollution, we derived the HYSPLIT trajectory which shows the majority of the movement was from local sources.</p></div>\",\"PeriodicalId\":611,\"journal\":{\"name\":\"Journal of Atmospheric Chemistry\",\"volume\":\"79 2\",\"pages\":\"117 - 139\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric Chemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10874-022-09432-5\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-022-09432-5","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Study of variation of aerosol optical properties over a high altitude station in Indian Western Himalayan region, palampur using raman lidar system
A Raman lidar system was operated along with the Microtops sunphotometer measurements to carry out the study of the variation of the optical properties of aerosols over Palampur (32.11° N and 76.53° E), India from 17th April to 11th May 2019. The lidar system is furnished with Raman (N2) channel and depolarization channel allowing independent measurement of Lidar Ratio (LR) and linear depolarization ratio. The study reveals that the majority of the aerosols approximately were restricted within the planetary boundary layer (PBL) and very less loading was present in the free troposphere over the study location. The particle loading over the study period was found to be very less with aerosol backscatter coefficient (at 355 nm) ranging from ∼0.13 Mm−1sr−1 to ∼7.25 Mm−1sr−1 with mean value of 2.67 ± 0.82 Mm−1sr−1 and it is well supplemented by the mean aerosol optical depth (AOD) of 0.37 ± 0.13 obtained from Microtops Sunphotometer. The average lidar ratio values for 0-1 km altitude (L1) 72 ± 13sr, for 1-2 km (L2) altitude 55 ± 8sr, for 2-3 km (L3) 54 ± 15sr were observed as suggesting dominance of the biomass burning aerosols and anthropogenic aerosols. The particle depolarization ratio (355 nm) values were found from approximately 4.8 ± 2.7% to 11.5 ± 1.9% with the mean value of 7 ± 1.3% suggesting the presence of non-spherical particles. To trace the sources of the pollution, we derived the HYSPLIT trajectory which shows the majority of the movement was from local sources.
期刊介绍:
The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics:
Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only.
The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere.
Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere.
Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.