Brønsted酸性离子液体中三氟甲烷磺酸钆催化葡萄糖连续流合成HMF的研究

IF 2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Journal of Flow Chemistry Pub Date : 2022-11-29 DOI:10.1007/s41981-022-00250-0
Ha Bich Phan, Trinh Hao Nguyen, Diep Dinh Le, Nhi Hoang Nguyen, Tan Van Nguyen, Phuong Hoang Tran
{"title":"Brønsted酸性离子液体中三氟甲烷磺酸钆催化葡萄糖连续流合成HMF的研究","authors":"Ha Bich Phan,&nbsp;Trinh Hao Nguyen,&nbsp;Diep Dinh Le,&nbsp;Nhi Hoang Nguyen,&nbsp;Tan Van Nguyen,&nbsp;Phuong Hoang Tran","doi":"10.1007/s41981-022-00250-0","DOIUrl":null,"url":null,"abstract":"<div><p>The direct conversion of glucose to 5-(hydroxymethyl)furfural (HMF) has been considered a challenging process. In this study, we developed a new method using gadolinium(III) trifluoromethanesulfonate (Gd(OTf)<sub>3</sub>) in combination with Brønsted acidic ionic liquids as a catalytic system to search possibly more environmentally benign process. The reaction was carried out under a continuous-flow system. The one-step isomerization/dehydration of glucose to give the highest HMF with Gd(OTf)<sub>3</sub> together with DBU-based Brønsted acidic ionic liquid in a low-cost home-built continuous system. The plausible mechanism was proposed with the Lewis acidic sites of Gd(OTf)<sub>3</sub> for the isomerization step and DBU-based Brønsted acidic ionic liquid sites for the dehydration step. The recycling of catalytic system Gd(OTf)<sub>3</sub>/DBU-based Brønsted acidic ionic liquid in DMSO was examined. Our findings provided a safe and environmental process for the continuous conversion of glucose into HMF. The use of continuous flow for HMF synthesis ensures that the current method can be applied to the large-scale process.</p></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"13 2","pages":"121 - 132"},"PeriodicalIF":2.0000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Continuous flow synthesis of HMF from glucose using gadolinium (III) trifluoromethanesulfonate in Brønsted acidic ionic liquid as a catalytic system\",\"authors\":\"Ha Bich Phan,&nbsp;Trinh Hao Nguyen,&nbsp;Diep Dinh Le,&nbsp;Nhi Hoang Nguyen,&nbsp;Tan Van Nguyen,&nbsp;Phuong Hoang Tran\",\"doi\":\"10.1007/s41981-022-00250-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The direct conversion of glucose to 5-(hydroxymethyl)furfural (HMF) has been considered a challenging process. In this study, we developed a new method using gadolinium(III) trifluoromethanesulfonate (Gd(OTf)<sub>3</sub>) in combination with Brønsted acidic ionic liquids as a catalytic system to search possibly more environmentally benign process. The reaction was carried out under a continuous-flow system. The one-step isomerization/dehydration of glucose to give the highest HMF with Gd(OTf)<sub>3</sub> together with DBU-based Brønsted acidic ionic liquid in a low-cost home-built continuous system. The plausible mechanism was proposed with the Lewis acidic sites of Gd(OTf)<sub>3</sub> for the isomerization step and DBU-based Brønsted acidic ionic liquid sites for the dehydration step. The recycling of catalytic system Gd(OTf)<sub>3</sub>/DBU-based Brønsted acidic ionic liquid in DMSO was examined. Our findings provided a safe and environmental process for the continuous conversion of glucose into HMF. The use of continuous flow for HMF synthesis ensures that the current method can be applied to the large-scale process.</p></div>\",\"PeriodicalId\":630,\"journal\":{\"name\":\"Journal of Flow Chemistry\",\"volume\":\"13 2\",\"pages\":\"121 - 132\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Flow Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41981-022-00250-0\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flow Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41981-022-00250-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

葡萄糖直接转化为5-羟甲基糠醛(HMF)一直被认为是一个具有挑战性的过程。在本研究中,我们开发了一种使用钆(III)三氟甲烷磺酸盐(Gd(OTf)3)与Brønsted酸性离子液体结合作为催化体系的新方法,以寻找可能更环保的工艺。反应是在连续流系统下进行的。在自制的低成本连续体系中,葡萄糖与Gd(OTf)3和dbu基Brønsted酸性离子液体一步异构/脱水得到最高HMF。提出了Gd(OTf)3的Lewis酸性位点和dbu基Brønsted酸性离子液体的脱水机理。研究了催化体系Gd(OTf)3/ dbu基Brønsted酸性离子液体在DMSO中的循环利用。我们的发现为葡萄糖连续转化为HMF提供了一个安全、环保的过程。连续流合成HMF保证了当前方法可以应用于大规模工艺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Continuous flow synthesis of HMF from glucose using gadolinium (III) trifluoromethanesulfonate in Brønsted acidic ionic liquid as a catalytic system

The direct conversion of glucose to 5-(hydroxymethyl)furfural (HMF) has been considered a challenging process. In this study, we developed a new method using gadolinium(III) trifluoromethanesulfonate (Gd(OTf)3) in combination with Brønsted acidic ionic liquids as a catalytic system to search possibly more environmentally benign process. The reaction was carried out under a continuous-flow system. The one-step isomerization/dehydration of glucose to give the highest HMF with Gd(OTf)3 together with DBU-based Brønsted acidic ionic liquid in a low-cost home-built continuous system. The plausible mechanism was proposed with the Lewis acidic sites of Gd(OTf)3 for the isomerization step and DBU-based Brønsted acidic ionic liquid sites for the dehydration step. The recycling of catalytic system Gd(OTf)3/DBU-based Brønsted acidic ionic liquid in DMSO was examined. Our findings provided a safe and environmental process for the continuous conversion of glucose into HMF. The use of continuous flow for HMF synthesis ensures that the current method can be applied to the large-scale process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Flow Chemistry
Journal of Flow Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
6.40
自引率
3.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: The main focus of the journal is flow chemistry in inorganic, organic, analytical and process chemistry in the academic research as well as in applied research and development in the pharmaceutical, agrochemical, fine-chemical, petro- chemical, fragrance industry.
期刊最新文献
Rapid and practical synthesis of N-protected amino ketones in continuous flow via pre-deprotonation protocol Expedited access to β-lactams via a telescoped three-component Staudinger reaction in flow Efficient “One-Column” grignard generation and reaction in continuous flow Two deep learning methods in comparison to characterize droplet sizes in emulsification flow processes Enhanced emulsification process between viscous liquids in an ultrasonic capillary microreactor: mechanism analysis and application in nano-emulsion preparation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1