Natalie P. Lounsbury, Nicholas D. Warren, Julia Hobbie, Heather Darby, Matthew R. Ryan, David A. Mortensen, Richard G. Smith
{"title":"种子大小变异性对实现覆盖种植目标具有影响","authors":"Natalie P. Lounsbury, Nicholas D. Warren, Julia Hobbie, Heather Darby, Matthew R. Ryan, David A. Mortensen, Richard G. Smith","doi":"10.1002/ael2.20080","DOIUrl":null,"url":null,"abstract":"<p>It is common to use mass-based units (e.g., kg ha<sup>–1</sup>) to describe cover crop seeding rates. However, this convention obscures important information about seed size and resulting plant density in the field, which may be linked to cover crop performance and ecosystem services. Seed counts of 27 lots of commercially available winter rye (<i>Secale cereale</i> L.) spanned a wide range from 28,000 to 50,000 seeds kg<sup>–1</sup>. If the lots with the lowest and highest seed counts were seeded at a common mass-based seeding rate of 125 kg ha<sup>–1</sup>, it would result in a nearly twofold difference in density-based seeding rate, or 3.0 and 5.6 million live seeds ha<sup>–1</sup>. Including density-based metrics such as live seeds per area and resulting in-field plant density in research will help advance our understanding of cover crop management, and these efforts will make it easier for farmers and policymakers to tailor cover cropping practices for specific goals.</p>","PeriodicalId":48502,"journal":{"name":"Agricultural & Environmental Letters","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://acsess.onlinelibrary.wiley.com/doi/epdf/10.1002/ael2.20080","citationCount":"2","resultStr":"{\"title\":\"Seed size variability has implications for achieving cover cropping goals\",\"authors\":\"Natalie P. Lounsbury, Nicholas D. Warren, Julia Hobbie, Heather Darby, Matthew R. Ryan, David A. Mortensen, Richard G. Smith\",\"doi\":\"10.1002/ael2.20080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is common to use mass-based units (e.g., kg ha<sup>–1</sup>) to describe cover crop seeding rates. However, this convention obscures important information about seed size and resulting plant density in the field, which may be linked to cover crop performance and ecosystem services. Seed counts of 27 lots of commercially available winter rye (<i>Secale cereale</i> L.) spanned a wide range from 28,000 to 50,000 seeds kg<sup>–1</sup>. If the lots with the lowest and highest seed counts were seeded at a common mass-based seeding rate of 125 kg ha<sup>–1</sup>, it would result in a nearly twofold difference in density-based seeding rate, or 3.0 and 5.6 million live seeds ha<sup>–1</sup>. Including density-based metrics such as live seeds per area and resulting in-field plant density in research will help advance our understanding of cover crop management, and these efforts will make it easier for farmers and policymakers to tailor cover cropping practices for specific goals.</p>\",\"PeriodicalId\":48502,\"journal\":{\"name\":\"Agricultural & Environmental Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://acsess.onlinelibrary.wiley.com/doi/epdf/10.1002/ael2.20080\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural & Environmental Letters\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ael2.20080\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural & Environmental Letters","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ael2.20080","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
摘要
通常使用以质量为基础的单位(例如,kg ha-1)来描述覆盖作物的播种率。然而,这种惯例掩盖了种子大小和由此产生的田间植物密度的重要信息,这些信息可能与覆盖作物的生产性能和生态系统服务有关。27批市售的冬季黑麦(Secale cereale L.)种子数量从28,000到50,000粒/ kg不等。如果种子数量最少和最高的地块以125 kg ha-1的共同质量播种率播种,则基于密度的播种率相差近两倍,即300万和560万粒活种子ha-1。在研究中纳入基于密度的指标,如每面积活种和由此产生的田间植物密度,将有助于增进我们对覆盖作物管理的理解,这些努力将使农民和决策者更容易为特定目标量身定制覆盖作物实践。
Seed size variability has implications for achieving cover cropping goals
It is common to use mass-based units (e.g., kg ha–1) to describe cover crop seeding rates. However, this convention obscures important information about seed size and resulting plant density in the field, which may be linked to cover crop performance and ecosystem services. Seed counts of 27 lots of commercially available winter rye (Secale cereale L.) spanned a wide range from 28,000 to 50,000 seeds kg–1. If the lots with the lowest and highest seed counts were seeded at a common mass-based seeding rate of 125 kg ha–1, it would result in a nearly twofold difference in density-based seeding rate, or 3.0 and 5.6 million live seeds ha–1. Including density-based metrics such as live seeds per area and resulting in-field plant density in research will help advance our understanding of cover crop management, and these efforts will make it easier for farmers and policymakers to tailor cover cropping practices for specific goals.