{"title":"赤铁矿单晶交流磁化率相外分量的极强各向异性及其成因","authors":"František Hrouda, Josef Ježek, Martin Chadima","doi":"10.1007/s11200-022-0829-2","DOIUrl":null,"url":null,"abstract":"<div><p>So far unknown anisotropic properties of out-of-phase magnetic susceptibility (opMS) of hematite and their bearing on understanding the origin of hematite magnetism were investigated on example of four single crystals from Minas Gerais, Brazil. The research comprised measurement of directional variation of field-dependent and frequency-dependent opMS and testing whether the anisotropy of opMS can be represented by the second rank tensor. It was found that the opMS shows strong field dependence along basal plane and only weak field dependence along c-axis. As for the frequency dependence, it is virtually non-existent along the basal plane. Along the c-axis, the opMS is similar at frequencies 976 and 3904 Hz, while at 15616 Hz it is clearly higher. Consequently, opMS is dominantly due to weak field hysteresis. The minimum opMS directions are parallel to the c-axis, while the other two principal directions lie within basal plane. The degree of anisotropy is extremely high (ratio of maximum opMS to minimum opMS ≫100) and the anisotropy ellipsoid is very oblate. In stereographic diagrams, the opMS contours very roughly resemble the theoretical contours calculated from opMS tensor. However, the differences between measured and theoretical values in directional opMS are clearly higher than the measuring error and are distributed very non-homogeneously. This indicates that the second rank tensor is only very approximate representative of the spatial variation of the directional opMS of hematite single crystals. Earlier model of hematite magnetism assuming slightly scanted antiferromagnetism along the c-axis and strongly canted antiferromagnetism or even weak ferromagnetism along the basal plane is supported.</p></div>","PeriodicalId":22001,"journal":{"name":"Studia Geophysica et Geodaetica","volume":"66 3-4","pages":"187 - 205"},"PeriodicalIF":0.5000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremely strong anisotropy of out-of-phase component of AC magnetic susceptibility in hematite single crystals and its origin\",\"authors\":\"František Hrouda, Josef Ježek, Martin Chadima\",\"doi\":\"10.1007/s11200-022-0829-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>So far unknown anisotropic properties of out-of-phase magnetic susceptibility (opMS) of hematite and their bearing on understanding the origin of hematite magnetism were investigated on example of four single crystals from Minas Gerais, Brazil. The research comprised measurement of directional variation of field-dependent and frequency-dependent opMS and testing whether the anisotropy of opMS can be represented by the second rank tensor. It was found that the opMS shows strong field dependence along basal plane and only weak field dependence along c-axis. As for the frequency dependence, it is virtually non-existent along the basal plane. Along the c-axis, the opMS is similar at frequencies 976 and 3904 Hz, while at 15616 Hz it is clearly higher. Consequently, opMS is dominantly due to weak field hysteresis. The minimum opMS directions are parallel to the c-axis, while the other two principal directions lie within basal plane. The degree of anisotropy is extremely high (ratio of maximum opMS to minimum opMS ≫100) and the anisotropy ellipsoid is very oblate. In stereographic diagrams, the opMS contours very roughly resemble the theoretical contours calculated from opMS tensor. However, the differences between measured and theoretical values in directional opMS are clearly higher than the measuring error and are distributed very non-homogeneously. This indicates that the second rank tensor is only very approximate representative of the spatial variation of the directional opMS of hematite single crystals. Earlier model of hematite magnetism assuming slightly scanted antiferromagnetism along the c-axis and strongly canted antiferromagnetism or even weak ferromagnetism along the basal plane is supported.</p></div>\",\"PeriodicalId\":22001,\"journal\":{\"name\":\"Studia Geophysica et Geodaetica\",\"volume\":\"66 3-4\",\"pages\":\"187 - 205\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Geophysica et Geodaetica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11200-022-0829-2\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geophysica et Geodaetica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11200-022-0829-2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Extremely strong anisotropy of out-of-phase component of AC magnetic susceptibility in hematite single crystals and its origin
So far unknown anisotropic properties of out-of-phase magnetic susceptibility (opMS) of hematite and their bearing on understanding the origin of hematite magnetism were investigated on example of four single crystals from Minas Gerais, Brazil. The research comprised measurement of directional variation of field-dependent and frequency-dependent opMS and testing whether the anisotropy of opMS can be represented by the second rank tensor. It was found that the opMS shows strong field dependence along basal plane and only weak field dependence along c-axis. As for the frequency dependence, it is virtually non-existent along the basal plane. Along the c-axis, the opMS is similar at frequencies 976 and 3904 Hz, while at 15616 Hz it is clearly higher. Consequently, opMS is dominantly due to weak field hysteresis. The minimum opMS directions are parallel to the c-axis, while the other two principal directions lie within basal plane. The degree of anisotropy is extremely high (ratio of maximum opMS to minimum opMS ≫100) and the anisotropy ellipsoid is very oblate. In stereographic diagrams, the opMS contours very roughly resemble the theoretical contours calculated from opMS tensor. However, the differences between measured and theoretical values in directional opMS are clearly higher than the measuring error and are distributed very non-homogeneously. This indicates that the second rank tensor is only very approximate representative of the spatial variation of the directional opMS of hematite single crystals. Earlier model of hematite magnetism assuming slightly scanted antiferromagnetism along the c-axis and strongly canted antiferromagnetism or even weak ferromagnetism along the basal plane is supported.
期刊介绍:
Studia geophysica et geodaetica is an international journal covering all aspects of geophysics, meteorology and climatology, and of geodesy. Published by the Institute of Geophysics of the Academy of Sciences of the Czech Republic, it has a long tradition, being published quarterly since 1956. Studia publishes theoretical and methodological contributions, which are of interest for academia as well as industry. The journal offers fast publication of contributions in regular as well as topical issues.