流动连续聚合物分析的进展及其在生物聚合物中的应用

IF 2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Journal of Flow Chemistry Pub Date : 2023-03-30 DOI:10.1007/s41981-023-00268-y
Samuel B. H. Patterson, Raymond Wong, Graeme Barker, Filipe Vilela
{"title":"流动连续聚合物分析的进展及其在生物聚合物中的应用","authors":"Samuel B. H. Patterson,&nbsp;Raymond Wong,&nbsp;Graeme Barker,&nbsp;Filipe Vilela","doi":"10.1007/s41981-023-00268-y","DOIUrl":null,"url":null,"abstract":"<div><p>Biopolymers, polymers derived from renewable biomass sources, have gained increasing attention in recent years due to their potential to replace traditional petroleum-based polymers in a range of applications. Among the many advantages of biopolymers can be included their biocompatibility, excellent mechanical properties, and availability from renewable feedstock. However, the development of biopolymers has been limited by a lack of understanding of their properties and processing behaviours. Continuous analysis techniques have the potential to hasten progress in this area by providing real-time insights into the properties and processing of biopolymers. Significant research in polymer chemistry has focused on petroleum-derived polymers and has thus provided a wealth of synthetic and analytical methodologies which may be applied to the biopolymer field. Of particular note is the application of flow technology in polymer science and its implications for accelerating progress towards more sustainable and environmentally friendly alternatives to traditional petroleum-based polymers. In this mini review we have outlined several of the most prominent use cases for biopolymers along with the current state-of-the art in continuous analysis of polymers in flow, including defining and differentiating atline, inline, online and offline analysis. We have found several examples for continuous flow analysis which have direct application to the biopolymer field, and we demonstrate an atline continuous polymer analysis method using size exclusion chromatography.</p><h3>Graphical abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"13 2","pages":"103 - 119"},"PeriodicalIF":2.0000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41981-023-00268-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Advances in continuous polymer analysis in flow with application towards biopolymers\",\"authors\":\"Samuel B. H. Patterson,&nbsp;Raymond Wong,&nbsp;Graeme Barker,&nbsp;Filipe Vilela\",\"doi\":\"10.1007/s41981-023-00268-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biopolymers, polymers derived from renewable biomass sources, have gained increasing attention in recent years due to their potential to replace traditional petroleum-based polymers in a range of applications. Among the many advantages of biopolymers can be included their biocompatibility, excellent mechanical properties, and availability from renewable feedstock. However, the development of biopolymers has been limited by a lack of understanding of their properties and processing behaviours. Continuous analysis techniques have the potential to hasten progress in this area by providing real-time insights into the properties and processing of biopolymers. Significant research in polymer chemistry has focused on petroleum-derived polymers and has thus provided a wealth of synthetic and analytical methodologies which may be applied to the biopolymer field. Of particular note is the application of flow technology in polymer science and its implications for accelerating progress towards more sustainable and environmentally friendly alternatives to traditional petroleum-based polymers. In this mini review we have outlined several of the most prominent use cases for biopolymers along with the current state-of-the art in continuous analysis of polymers in flow, including defining and differentiating atline, inline, online and offline analysis. We have found several examples for continuous flow analysis which have direct application to the biopolymer field, and we demonstrate an atline continuous polymer analysis method using size exclusion chromatography.</p><h3>Graphical abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":630,\"journal\":{\"name\":\"Journal of Flow Chemistry\",\"volume\":\"13 2\",\"pages\":\"103 - 119\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s41981-023-00268-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Flow Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41981-023-00268-y\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flow Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41981-023-00268-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

生物聚合物是一种从可再生生物质中提取的聚合物,近年来由于其在一系列应用中取代传统石油基聚合物的潜力而受到越来越多的关注。生物聚合物的众多优点包括其生物相容性、优异的机械性能和可再生原料的可用性。然而,由于缺乏对其性质和加工行为的了解,生物聚合物的发展受到限制。连续分析技术通过提供对生物聚合物特性和加工的实时洞察,有可能加速这一领域的进展。聚合物化学的重要研究集中在石油衍生聚合物上,从而提供了丰富的合成和分析方法,可应用于生物聚合物领域。特别值得注意的是流动技术在聚合物科学中的应用,以及它对加速开发更可持续、更环保的传统石油基聚合物替代品的影响。在这篇简短的综述中,我们概述了生物聚合物的几个最突出的用例,以及当前流动中聚合物连续分析的最新技术,包括定义和区分在线、在线、在线和离线分析。我们找到了几个可以直接应用于生物聚合物领域的连续流分析的例子,并演示了一种使用粒径排除色谱法的在线连续聚合物分析方法。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advances in continuous polymer analysis in flow with application towards biopolymers

Biopolymers, polymers derived from renewable biomass sources, have gained increasing attention in recent years due to their potential to replace traditional petroleum-based polymers in a range of applications. Among the many advantages of biopolymers can be included their biocompatibility, excellent mechanical properties, and availability from renewable feedstock. However, the development of biopolymers has been limited by a lack of understanding of their properties and processing behaviours. Continuous analysis techniques have the potential to hasten progress in this area by providing real-time insights into the properties and processing of biopolymers. Significant research in polymer chemistry has focused on petroleum-derived polymers and has thus provided a wealth of synthetic and analytical methodologies which may be applied to the biopolymer field. Of particular note is the application of flow technology in polymer science and its implications for accelerating progress towards more sustainable and environmentally friendly alternatives to traditional petroleum-based polymers. In this mini review we have outlined several of the most prominent use cases for biopolymers along with the current state-of-the art in continuous analysis of polymers in flow, including defining and differentiating atline, inline, online and offline analysis. We have found several examples for continuous flow analysis which have direct application to the biopolymer field, and we demonstrate an atline continuous polymer analysis method using size exclusion chromatography.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Flow Chemistry
Journal of Flow Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
6.40
自引率
3.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: The main focus of the journal is flow chemistry in inorganic, organic, analytical and process chemistry in the academic research as well as in applied research and development in the pharmaceutical, agrochemical, fine-chemical, petro- chemical, fragrance industry.
期刊最新文献
Rapid and practical synthesis of N-protected amino ketones in continuous flow via pre-deprotonation protocol Expedited access to β-lactams via a telescoped three-component Staudinger reaction in flow Efficient “One-Column” grignard generation and reaction in continuous flow Two deep learning methods in comparison to characterize droplet sizes in emulsification flow processes Enhanced emulsification process between viscous liquids in an ultrasonic capillary microreactor: mechanism analysis and application in nano-emulsion preparation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1