Baojun Sun, Caroline M. Williams, Teng Li, John R. Speakman, Zengguang Jin, Hongliang Lu, Laigao Luo, Weiguo Du
{"title":"与热带蜥蜴相比,温带蜥蜴的代谢可塑性更高,这表明它们对气候变化的适应能力更强","authors":"Baojun Sun, Caroline M. Williams, Teng Li, John R. Speakman, Zengguang Jin, Hongliang Lu, Laigao Luo, Weiguo Du","doi":"10.1002/ecm.1512","DOIUrl":null,"url":null,"abstract":"<p>Patterns in functional diversity of organisms at large spatial scales can provide insight into possible responses to future climate change, but it remains a challenge to link large-scale patterns at the population or species level to their underlying physiological mechanisms at the individual level. The climate variability hypothesis predicts that temperate ectotherms will be less vulnerable to climate warming compared with tropical ectotherms, due to their superior acclimatization capacity. However, metabolic acclimatization occurs over multiple levels, from the enzyme and cellular level, through organ systems, to whole-organism metabolic rate (from this point forwards biological hierarchy). Previous studies have focused on one or a few levels of the biological hierarchy, leaving us without a general understanding of how metabolic acclimatization might differ between tropical and temperate species. Here, we investigated thermal acclimation of three species of <i>Takydromus</i> lizards distributed along a broad latitudinal gradient in China, by studying metabolic modifications at the level of the whole organism, organ, mitochondria, metabolome, and proteome. As predicted by the climate variability hypothesis, the two temperate species <i>T. septentrionalis</i> and <i>T. wolteri</i> had an enhanced acclimation response at the whole organism level compared with the tropical species <i>T. sexlineatus</i>, as measured by respiratory gas exchange rates. However, the mechanisms by which whole organism performance was modified was strikingly different in the two temperate species: widespread <i>T. septentrionalis</i> modified organ sizes, whereas the narrowly distributed <i>T. wolteri</i> relied on mitochondrial, proteomic and metabolomic regulation. We suggest that these two mechanisms of thermal acclimatization may represent general strategies used by ectotherms, with distinct ecological costs and benefits. Lacking either of these mechanisms of thermal acclimatization capacity, the tropical species is likely to have increased vulnerability to climate change.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"92 2","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2022-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Higher metabolic plasticity in temperate compared to tropical lizards suggests increased resilience to climate change\",\"authors\":\"Baojun Sun, Caroline M. Williams, Teng Li, John R. Speakman, Zengguang Jin, Hongliang Lu, Laigao Luo, Weiguo Du\",\"doi\":\"10.1002/ecm.1512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Patterns in functional diversity of organisms at large spatial scales can provide insight into possible responses to future climate change, but it remains a challenge to link large-scale patterns at the population or species level to their underlying physiological mechanisms at the individual level. The climate variability hypothesis predicts that temperate ectotherms will be less vulnerable to climate warming compared with tropical ectotherms, due to their superior acclimatization capacity. However, metabolic acclimatization occurs over multiple levels, from the enzyme and cellular level, through organ systems, to whole-organism metabolic rate (from this point forwards biological hierarchy). Previous studies have focused on one or a few levels of the biological hierarchy, leaving us without a general understanding of how metabolic acclimatization might differ between tropical and temperate species. Here, we investigated thermal acclimation of three species of <i>Takydromus</i> lizards distributed along a broad latitudinal gradient in China, by studying metabolic modifications at the level of the whole organism, organ, mitochondria, metabolome, and proteome. As predicted by the climate variability hypothesis, the two temperate species <i>T. septentrionalis</i> and <i>T. wolteri</i> had an enhanced acclimation response at the whole organism level compared with the tropical species <i>T. sexlineatus</i>, as measured by respiratory gas exchange rates. However, the mechanisms by which whole organism performance was modified was strikingly different in the two temperate species: widespread <i>T. septentrionalis</i> modified organ sizes, whereas the narrowly distributed <i>T. wolteri</i> relied on mitochondrial, proteomic and metabolomic regulation. We suggest that these two mechanisms of thermal acclimatization may represent general strategies used by ectotherms, with distinct ecological costs and benefits. Lacking either of these mechanisms of thermal acclimatization capacity, the tropical species is likely to have increased vulnerability to climate change.</p>\",\"PeriodicalId\":11505,\"journal\":{\"name\":\"Ecological Monographs\",\"volume\":\"92 2\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2022-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Monographs\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1512\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1512","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Higher metabolic plasticity in temperate compared to tropical lizards suggests increased resilience to climate change
Patterns in functional diversity of organisms at large spatial scales can provide insight into possible responses to future climate change, but it remains a challenge to link large-scale patterns at the population or species level to their underlying physiological mechanisms at the individual level. The climate variability hypothesis predicts that temperate ectotherms will be less vulnerable to climate warming compared with tropical ectotherms, due to their superior acclimatization capacity. However, metabolic acclimatization occurs over multiple levels, from the enzyme and cellular level, through organ systems, to whole-organism metabolic rate (from this point forwards biological hierarchy). Previous studies have focused on one or a few levels of the biological hierarchy, leaving us without a general understanding of how metabolic acclimatization might differ between tropical and temperate species. Here, we investigated thermal acclimation of three species of Takydromus lizards distributed along a broad latitudinal gradient in China, by studying metabolic modifications at the level of the whole organism, organ, mitochondria, metabolome, and proteome. As predicted by the climate variability hypothesis, the two temperate species T. septentrionalis and T. wolteri had an enhanced acclimation response at the whole organism level compared with the tropical species T. sexlineatus, as measured by respiratory gas exchange rates. However, the mechanisms by which whole organism performance was modified was strikingly different in the two temperate species: widespread T. septentrionalis modified organ sizes, whereas the narrowly distributed T. wolteri relied on mitochondrial, proteomic and metabolomic regulation. We suggest that these two mechanisms of thermal acclimatization may represent general strategies used by ectotherms, with distinct ecological costs and benefits. Lacking either of these mechanisms of thermal acclimatization capacity, the tropical species is likely to have increased vulnerability to climate change.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.