A. V. Miroshnikova, A. S. Kazachenko, B. N. Kuznetsov, O. P. Taran
{"title":"木质纤维素生物质的还原催化分馏:一种有前途的复杂加工新方法","authors":"A. V. Miroshnikova, A. S. Kazachenko, B. N. Kuznetsov, O. P. Taran","doi":"10.1134/S2070050422020052","DOIUrl":null,"url":null,"abstract":"<p>This review focused to the discussion of the results from recent research in a promising area of the complex processing of lignocellulosic biomass: reductive catalytic fractionation (RCF). The effect catalysts, co-catalysts, solvents, sources of hydrogen, and the nature of lignocellulosic raw materials on the selectivity in the production of monomeric lignin products is considered. Heterogeneous catalysts are mainly used in RCF processes, which allows the reductive depolymerization of lignin to obtain low molecular weight compounds while maintaining the carbohydrate components of the biomass. Of the considered catalysts based on platinum group and transition metals, those containing Pd, Pt, Ru, and Ni have the highest activity. The nature of the metal also affects the composition of the resulting products. For example, ruthenium catalysts produce 4-propyl guaiacol as the main product, while ones based on Ni and Pd yield 4-propanol guaiacol. Catalysts containing Mo, due to their lower hydrogenation activity, give monolignols or their esterified derivatives of while preserving the carbohydrate components of lignocellulosic biomass. However, bifunctional catalysts that contain both acidic and metallic active sites are the most efficient in RCF processes. Acid sites contribute to the breaking of etheric β-O-4 bonds, while metal sites catalyze reduction of the resulting intermediate compounds. An important aspect of selecting suitable catalysts for the RCF process is their reusability. The use of a ferromagnetic catalyst or a basket for the catalyst solves the problem of separating it from products of the process.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"14 2","pages":"231 - 250"},"PeriodicalIF":0.7000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reductive Catalytic Fractionation of Lignocellulosic Biomass: A New Promissing Method for Its Complex Processing\",\"authors\":\"A. V. Miroshnikova, A. S. Kazachenko, B. N. Kuznetsov, O. P. Taran\",\"doi\":\"10.1134/S2070050422020052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This review focused to the discussion of the results from recent research in a promising area of the complex processing of lignocellulosic biomass: reductive catalytic fractionation (RCF). The effect catalysts, co-catalysts, solvents, sources of hydrogen, and the nature of lignocellulosic raw materials on the selectivity in the production of monomeric lignin products is considered. Heterogeneous catalysts are mainly used in RCF processes, which allows the reductive depolymerization of lignin to obtain low molecular weight compounds while maintaining the carbohydrate components of the biomass. Of the considered catalysts based on platinum group and transition metals, those containing Pd, Pt, Ru, and Ni have the highest activity. The nature of the metal also affects the composition of the resulting products. For example, ruthenium catalysts produce 4-propyl guaiacol as the main product, while ones based on Ni and Pd yield 4-propanol guaiacol. Catalysts containing Mo, due to their lower hydrogenation activity, give monolignols or their esterified derivatives of while preserving the carbohydrate components of lignocellulosic biomass. However, bifunctional catalysts that contain both acidic and metallic active sites are the most efficient in RCF processes. Acid sites contribute to the breaking of etheric β-O-4 bonds, while metal sites catalyze reduction of the resulting intermediate compounds. An important aspect of selecting suitable catalysts for the RCF process is their reusability. The use of a ferromagnetic catalyst or a basket for the catalyst solves the problem of separating it from products of the process.</p>\",\"PeriodicalId\":507,\"journal\":{\"name\":\"Catalysis in Industry\",\"volume\":\"14 2\",\"pages\":\"231 - 250\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis in Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2070050422020052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis in Industry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2070050422020052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Reductive Catalytic Fractionation of Lignocellulosic Biomass: A New Promissing Method for Its Complex Processing
This review focused to the discussion of the results from recent research in a promising area of the complex processing of lignocellulosic biomass: reductive catalytic fractionation (RCF). The effect catalysts, co-catalysts, solvents, sources of hydrogen, and the nature of lignocellulosic raw materials on the selectivity in the production of monomeric lignin products is considered. Heterogeneous catalysts are mainly used in RCF processes, which allows the reductive depolymerization of lignin to obtain low molecular weight compounds while maintaining the carbohydrate components of the biomass. Of the considered catalysts based on platinum group and transition metals, those containing Pd, Pt, Ru, and Ni have the highest activity. The nature of the metal also affects the composition of the resulting products. For example, ruthenium catalysts produce 4-propyl guaiacol as the main product, while ones based on Ni and Pd yield 4-propanol guaiacol. Catalysts containing Mo, due to their lower hydrogenation activity, give monolignols or their esterified derivatives of while preserving the carbohydrate components of lignocellulosic biomass. However, bifunctional catalysts that contain both acidic and metallic active sites are the most efficient in RCF processes. Acid sites contribute to the breaking of etheric β-O-4 bonds, while metal sites catalyze reduction of the resulting intermediate compounds. An important aspect of selecting suitable catalysts for the RCF process is their reusability. The use of a ferromagnetic catalyst or a basket for the catalyst solves the problem of separating it from products of the process.
期刊介绍:
The journal covers the following topical areas:
Analysis of specific industrial catalytic processes: Production and use of catalysts in branches of industry: chemical, petrochemical, oil-refining, pharmaceutical, organic synthesis, fuel-energetic industries, environment protection, biocatalysis; technology of industrial catalytic processes (generalization of practical experience, improvements, and modernization); technology of catalysts production, raw materials and equipment; control of catalysts quality; starting, reduction, passivation, discharge, storage of catalysts; catalytic reactors.Theoretical foundations of industrial catalysis and technologies: Research, studies, and concepts : search for and development of new catalysts and new types of supports, formation of active components, and mechanochemistry in catalysis; comprehensive studies of work-out catalysts and analysis of deactivation mechanisms; studies of the catalytic process at different scale levels (laboratory, pilot plant, industrial); kinetics of industrial and newly developed catalytic processes and development of kinetic models; nonlinear dynamics and nonlinear phenomena in catalysis: multiplicity of stationary states, stepwise changes in regimes, etc. Advances in catalysis: Catalysis and gas chemistry; catalysis and new energy technologies; biocatalysis; nanocatalysis; catalysis and new construction materials.History of the development of industrial catalysis.