{"title":"四川省人为大气污染源排放清查及VOCs种类特征","authors":"Zihang Zhou, Qinwen Tan, Ye Deng, Keying Wu, Xinyue Yang, Xiaoling Zhou","doi":"10.1007/s10874-019-9386-7","DOIUrl":null,"url":null,"abstract":"<p>The purpose of this paper is to develop an emission inventory of anthropogenic air pollutants and VOCs species in Sichuan Province. Based on the anthropogenic source activity data collected in different cities of Sichuan Province and the selected emission factors, the 1?km?×?1?km gridded atmospheric air pollutant emission inventory of 2015 was developed in the “bottom-up” and “top-down” approaches with the GIS technology. The results showed that the emissions of SO<sub>2</sub>, NO<sub>X</sub>, CO, PM<sub>10</sub>, PM<sub>2.5</sub>, BC, OC, VOCs and NH<sub>3</sub> from anthropogenic sources in Sichuan Province were 444.9 kt, 820.0 kt, 3773.1 kt, 1371.6 kt, 537.5 kt, 28.7 kt, 53.1 kt, 923.6 kt and 988.0 kt, respectively. Power plants and other industrial combustion boilers contributed more than 95% of SO<sub>2</sub> emission. Transportation, fossil fuel burning and industrial process contributed 54%, 23% and 20% of NOx emission respectively. Industrial process dominated by steel production and building material manufacturing contributed 20% of PM<sub>10</sub> emission and 34% of PM<sub>2.5</sub> emission. Fugitive dust dominated by road fugitive dust contributed 60% of PM<sub>10</sub> emission and 35% of PM<sub>2.5</sub> emission respectively. Biomass burning contributed 33% of BC emission and 51% of OC emission respectively. Solvent use of mechanical processing, building decoration, electronic equipment manufacturing, printing and furniture industry contributed 46% of VOCs emission. NH<sub>3</sub> mainly came from the emission of agricultural sectors, such as livestock breeding and N-fertilizer application, which contributed 70% and 25% of NH<sub>3</sub> emission respectively. The percentage of alkanes, alkenes, alkynes, aromatics, OVOCs, halohydrocarbons and other VOCs in the total VOCs emission were 17%, 9%, 2%, 23%, 22%, 4% and 23%, respectively. Ethene, m-xylene, toluene, propene, formaldehyde, o-xylene, 1, 2, 4-trimethyl benzene, 1-butene, p-xylene and ethyl benzene were the most critical chemical species for the formation of ozone pollution in Sichuan Province contributing 50% of the total OFP. Various air pollutants and OFP were mainly distributed in places with the densest population and well-developed agriculture and industry in Sichuan Basin and some areas of Panzhihua. The Chengdu Plain urban agglomerations, represented by Chengdu, Deyang and Mianyang, were the main areas with concentrated pollutant emissions in Sichuan Basin.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"76 1","pages":"21 - 58"},"PeriodicalIF":3.0000,"publicationDate":"2019-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-019-9386-7","citationCount":"23","resultStr":"{\"title\":\"Emission inventory of anthropogenic air pollutant sources and characteristics of VOCs species in Sichuan Province, China\",\"authors\":\"Zihang Zhou, Qinwen Tan, Ye Deng, Keying Wu, Xinyue Yang, Xiaoling Zhou\",\"doi\":\"10.1007/s10874-019-9386-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The purpose of this paper is to develop an emission inventory of anthropogenic air pollutants and VOCs species in Sichuan Province. Based on the anthropogenic source activity data collected in different cities of Sichuan Province and the selected emission factors, the 1?km?×?1?km gridded atmospheric air pollutant emission inventory of 2015 was developed in the “bottom-up” and “top-down” approaches with the GIS technology. The results showed that the emissions of SO<sub>2</sub>, NO<sub>X</sub>, CO, PM<sub>10</sub>, PM<sub>2.5</sub>, BC, OC, VOCs and NH<sub>3</sub> from anthropogenic sources in Sichuan Province were 444.9 kt, 820.0 kt, 3773.1 kt, 1371.6 kt, 537.5 kt, 28.7 kt, 53.1 kt, 923.6 kt and 988.0 kt, respectively. Power plants and other industrial combustion boilers contributed more than 95% of SO<sub>2</sub> emission. Transportation, fossil fuel burning and industrial process contributed 54%, 23% and 20% of NOx emission respectively. Industrial process dominated by steel production and building material manufacturing contributed 20% of PM<sub>10</sub> emission and 34% of PM<sub>2.5</sub> emission. Fugitive dust dominated by road fugitive dust contributed 60% of PM<sub>10</sub> emission and 35% of PM<sub>2.5</sub> emission respectively. Biomass burning contributed 33% of BC emission and 51% of OC emission respectively. Solvent use of mechanical processing, building decoration, electronic equipment manufacturing, printing and furniture industry contributed 46% of VOCs emission. NH<sub>3</sub> mainly came from the emission of agricultural sectors, such as livestock breeding and N-fertilizer application, which contributed 70% and 25% of NH<sub>3</sub> emission respectively. The percentage of alkanes, alkenes, alkynes, aromatics, OVOCs, halohydrocarbons and other VOCs in the total VOCs emission were 17%, 9%, 2%, 23%, 22%, 4% and 23%, respectively. Ethene, m-xylene, toluene, propene, formaldehyde, o-xylene, 1, 2, 4-trimethyl benzene, 1-butene, p-xylene and ethyl benzene were the most critical chemical species for the formation of ozone pollution in Sichuan Province contributing 50% of the total OFP. Various air pollutants and OFP were mainly distributed in places with the densest population and well-developed agriculture and industry in Sichuan Basin and some areas of Panzhihua. The Chengdu Plain urban agglomerations, represented by Chengdu, Deyang and Mianyang, were the main areas with concentrated pollutant emissions in Sichuan Basin.</p>\",\"PeriodicalId\":611,\"journal\":{\"name\":\"Journal of Atmospheric Chemistry\",\"volume\":\"76 1\",\"pages\":\"21 - 58\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2019-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10874-019-9386-7\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric Chemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10874-019-9386-7\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-019-9386-7","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Emission inventory of anthropogenic air pollutant sources and characteristics of VOCs species in Sichuan Province, China
The purpose of this paper is to develop an emission inventory of anthropogenic air pollutants and VOCs species in Sichuan Province. Based on the anthropogenic source activity data collected in different cities of Sichuan Province and the selected emission factors, the 1?km?×?1?km gridded atmospheric air pollutant emission inventory of 2015 was developed in the “bottom-up” and “top-down” approaches with the GIS technology. The results showed that the emissions of SO2, NOX, CO, PM10, PM2.5, BC, OC, VOCs and NH3 from anthropogenic sources in Sichuan Province were 444.9 kt, 820.0 kt, 3773.1 kt, 1371.6 kt, 537.5 kt, 28.7 kt, 53.1 kt, 923.6 kt and 988.0 kt, respectively. Power plants and other industrial combustion boilers contributed more than 95% of SO2 emission. Transportation, fossil fuel burning and industrial process contributed 54%, 23% and 20% of NOx emission respectively. Industrial process dominated by steel production and building material manufacturing contributed 20% of PM10 emission and 34% of PM2.5 emission. Fugitive dust dominated by road fugitive dust contributed 60% of PM10 emission and 35% of PM2.5 emission respectively. Biomass burning contributed 33% of BC emission and 51% of OC emission respectively. Solvent use of mechanical processing, building decoration, electronic equipment manufacturing, printing and furniture industry contributed 46% of VOCs emission. NH3 mainly came from the emission of agricultural sectors, such as livestock breeding and N-fertilizer application, which contributed 70% and 25% of NH3 emission respectively. The percentage of alkanes, alkenes, alkynes, aromatics, OVOCs, halohydrocarbons and other VOCs in the total VOCs emission were 17%, 9%, 2%, 23%, 22%, 4% and 23%, respectively. Ethene, m-xylene, toluene, propene, formaldehyde, o-xylene, 1, 2, 4-trimethyl benzene, 1-butene, p-xylene and ethyl benzene were the most critical chemical species for the formation of ozone pollution in Sichuan Province contributing 50% of the total OFP. Various air pollutants and OFP were mainly distributed in places with the densest population and well-developed agriculture and industry in Sichuan Basin and some areas of Panzhihua. The Chengdu Plain urban agglomerations, represented by Chengdu, Deyang and Mianyang, were the main areas with concentrated pollutant emissions in Sichuan Basin.
期刊介绍:
The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics:
Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only.
The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere.
Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere.
Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.