{"title":"来自低质量年轻原恒星物体的分子射流","authors":"Chin-Fei Lee","doi":"10.1007/s00159-020-0123-7","DOIUrl":null,"url":null,"abstract":"<p>Molecular jets are seen coming from the youngest protostars in the early phase of low-mass star formation. They are detected in CO, SiO, and SO at (sub)millimeter wavelengths down to the innermost regions, where their associated protostars and accretion disks are deeply embedded and where they are launched and collimated. They are not only the fossil records of accretion history of the protostars but also are expected to play an important role in facilitating the accretion process. Studying their physical properties (e.g., mass-loss rate, velocity, rotation, radius, wiggle, molecular content, shock formation, periodical variation, magnetic field, etc) allows us to probe not only the jet launching and collimation, but also the disk accretion and evolution, and potentially binary formation and planetary formation in the disks. Here, the recent exciting results obtained with high-spatial and high-velocity resolution observations of molecular jets in comparison to those obtained in the optical jets in the later phase of star formation are reviewed. Future observations of molecular jets with a large sample at high spatial and velocity resolution with ALMA are expected to lead to a breakthrough in our understanding of jets from young stars.</p>","PeriodicalId":785,"journal":{"name":"The Astronomy and Astrophysics Review","volume":"28 1","pages":""},"PeriodicalIF":27.8000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00159-020-0123-7","citationCount":"31","resultStr":"{\"title\":\"Molecular jets from low-mass young protostellar objects\",\"authors\":\"Chin-Fei Lee\",\"doi\":\"10.1007/s00159-020-0123-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Molecular jets are seen coming from the youngest protostars in the early phase of low-mass star formation. They are detected in CO, SiO, and SO at (sub)millimeter wavelengths down to the innermost regions, where their associated protostars and accretion disks are deeply embedded and where they are launched and collimated. They are not only the fossil records of accretion history of the protostars but also are expected to play an important role in facilitating the accretion process. Studying their physical properties (e.g., mass-loss rate, velocity, rotation, radius, wiggle, molecular content, shock formation, periodical variation, magnetic field, etc) allows us to probe not only the jet launching and collimation, but also the disk accretion and evolution, and potentially binary formation and planetary formation in the disks. Here, the recent exciting results obtained with high-spatial and high-velocity resolution observations of molecular jets in comparison to those obtained in the optical jets in the later phase of star formation are reviewed. Future observations of molecular jets with a large sample at high spatial and velocity resolution with ALMA are expected to lead to a breakthrough in our understanding of jets from young stars.</p>\",\"PeriodicalId\":785,\"journal\":{\"name\":\"The Astronomy and Astrophysics Review\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":27.8000,\"publicationDate\":\"2020-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00159-020-0123-7\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astronomy and Astrophysics Review\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00159-020-0123-7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astronomy and Astrophysics Review","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00159-020-0123-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Molecular jets from low-mass young protostellar objects
Molecular jets are seen coming from the youngest protostars in the early phase of low-mass star formation. They are detected in CO, SiO, and SO at (sub)millimeter wavelengths down to the innermost regions, where their associated protostars and accretion disks are deeply embedded and where they are launched and collimated. They are not only the fossil records of accretion history of the protostars but also are expected to play an important role in facilitating the accretion process. Studying their physical properties (e.g., mass-loss rate, velocity, rotation, radius, wiggle, molecular content, shock formation, periodical variation, magnetic field, etc) allows us to probe not only the jet launching and collimation, but also the disk accretion and evolution, and potentially binary formation and planetary formation in the disks. Here, the recent exciting results obtained with high-spatial and high-velocity resolution observations of molecular jets in comparison to those obtained in the optical jets in the later phase of star formation are reviewed. Future observations of molecular jets with a large sample at high spatial and velocity resolution with ALMA are expected to lead to a breakthrough in our understanding of jets from young stars.
期刊介绍:
The Astronomy and Astrophysics Review is a journal that covers all areas of astronomy and astrophysics. It includes subjects related to other fields such as laboratory or particle physics, cosmic ray physics, studies in the solar system, astrobiology, instrumentation, and computational and statistical methods with specific astronomical applications. The frequency of review articles depends on the level of activity in different areas. The journal focuses on publishing review articles that are scientifically rigorous and easily comprehensible. These articles serve as a valuable resource for scientists, students, researchers, and lecturers who want to explore new or unfamiliar fields. The journal is abstracted and indexed in various databases including the Astrophysics Data System (ADS), BFI List, CNKI, CNPIEC, Current Contents/Physical, Chemical and Earth Sciences, Dimensions, EBSCO Academic Search, EI Compendex, Japanese Science and Technology, and more.