栖息和悬停机动的离散涡建模

IF 2.2 3区 工程技术 Q2 MECHANICS Theoretical and Computational Fluid Dynamics Pub Date : 2023-05-31 DOI:10.1007/s00162-023-00653-2
Shreyas Narsipur, Kiran Ramesh, Ashok Gopalarathnam, Jack R. Edwards
{"title":"栖息和悬停机动的离散涡建模","authors":"Shreyas Narsipur,&nbsp;Kiran Ramesh,&nbsp;Ashok Gopalarathnam,&nbsp;Jack R. Edwards","doi":"10.1007/s00162-023-00653-2","DOIUrl":null,"url":null,"abstract":"<p>Perching and hovering are two bio-inspired flight maneuvers that have relevance in engineering, especially for small-scale uncrewed air vehicles. In a perching maneuver, the vehicle decelerates to zero velocity while pitching or plunging, and in hovering the pitch and plunge motion kinematics are used to generate fluid dynamic forces even when the vehicle velocity is zero. Even for an airfoil, the fluid dynamics of such maneuvers pose challenges for low-order modeling because of the time-varying freestream velocity, high amplitudes and rates of the motion kinematics, intermittent formation and shedding of the leading-edge vortex (LEV), and the strong effects of the shed vorticity on the loads. In an earlier work by the authors, a leading-edge suction parameter (LESP) was developed to predict intermittent LEV formation for round-leading-edge airfoils undergoing arbitrary variation in pitch and plunge at a constant freestream velocity. In this research, the LESP criterion is extended to situations where the freestream velocity is varying or zero. A discrete vortex method based on this criterion is developed and the results are compared against those from a computational fluid dynamics (CFD) method. Abstractions of perching and hovering maneuvers are used to validate the predictions in highly unsteady vortex-dominated flows, where the time-varying freestream/translational velocity is small in magnitude compared to other contributions to the velocity experienced by the airfoil. Time instants of LEV formation, flow features, and force coefficient histories for the various motion kinematics from the method and CFD are obtained and compared. The LESP criterion is seen to be successful in predicting the start of LEV formation, and the discrete vortex method is effective in modeling the flow development and forces on the airfoil.</p>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"37 4","pages":"445 - 464"},"PeriodicalIF":2.2000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete vortex modeling of perching and hovering maneuvers\",\"authors\":\"Shreyas Narsipur,&nbsp;Kiran Ramesh,&nbsp;Ashok Gopalarathnam,&nbsp;Jack R. Edwards\",\"doi\":\"10.1007/s00162-023-00653-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Perching and hovering are two bio-inspired flight maneuvers that have relevance in engineering, especially for small-scale uncrewed air vehicles. In a perching maneuver, the vehicle decelerates to zero velocity while pitching or plunging, and in hovering the pitch and plunge motion kinematics are used to generate fluid dynamic forces even when the vehicle velocity is zero. Even for an airfoil, the fluid dynamics of such maneuvers pose challenges for low-order modeling because of the time-varying freestream velocity, high amplitudes and rates of the motion kinematics, intermittent formation and shedding of the leading-edge vortex (LEV), and the strong effects of the shed vorticity on the loads. In an earlier work by the authors, a leading-edge suction parameter (LESP) was developed to predict intermittent LEV formation for round-leading-edge airfoils undergoing arbitrary variation in pitch and plunge at a constant freestream velocity. In this research, the LESP criterion is extended to situations where the freestream velocity is varying or zero. A discrete vortex method based on this criterion is developed and the results are compared against those from a computational fluid dynamics (CFD) method. Abstractions of perching and hovering maneuvers are used to validate the predictions in highly unsteady vortex-dominated flows, where the time-varying freestream/translational velocity is small in magnitude compared to other contributions to the velocity experienced by the airfoil. Time instants of LEV formation, flow features, and force coefficient histories for the various motion kinematics from the method and CFD are obtained and compared. The LESP criterion is seen to be successful in predicting the start of LEV formation, and the discrete vortex method is effective in modeling the flow development and forces on the airfoil.</p>\",\"PeriodicalId\":795,\"journal\":{\"name\":\"Theoretical and Computational Fluid Dynamics\",\"volume\":\"37 4\",\"pages\":\"445 - 464\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Computational Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00162-023-00653-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00162-023-00653-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

悬停和悬停是两种受生物启发的飞行动作,在工程上具有相关性,特别是对于小型无人飞行器。在悬停机动中,飞行器在俯仰或俯冲时减速至零速度,在悬停机动中,俯仰和俯冲运动运动学用于产生流体动力,即使飞行器的速度为零。即使对于翼型来说,由于随时间变化的自由流速度、运动运动学的高振幅和速率、前缘涡(LEV)的间歇性形成和脱落以及脱落涡量对载荷的强烈影响,这种机动的流体动力学对低阶建模提出了挑战。在作者的早期工作中,开发了前缘吸力参数(LESP)来预测在恒定自由流速度下经历任意俯仰和俯冲变化的圆前缘翼型的间歇性LEV形成。本研究将LESP准则推广到自由流速度变化或为零的情况。建立了基于该准则的离散涡方法,并与计算流体力学(CFD)方法的结果进行了比较。悬停和悬停机动的抽象用于验证高度非定常旋涡主导的流动中的预测,其中随时间变化的自由流/平动速度与翼型所经历的速度的其他贡献相比,在量级上很小。得到并比较了该方法和CFD得到的LEV形成的时间瞬间、流动特征和各种运动运动学的力系数历史。LESP准则可以成功地预测LEV形成的开始,离散涡方法可以有效地模拟气流发展和翼型上的力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discrete vortex modeling of perching and hovering maneuvers

Perching and hovering are two bio-inspired flight maneuvers that have relevance in engineering, especially for small-scale uncrewed air vehicles. In a perching maneuver, the vehicle decelerates to zero velocity while pitching or plunging, and in hovering the pitch and plunge motion kinematics are used to generate fluid dynamic forces even when the vehicle velocity is zero. Even for an airfoil, the fluid dynamics of such maneuvers pose challenges for low-order modeling because of the time-varying freestream velocity, high amplitudes and rates of the motion kinematics, intermittent formation and shedding of the leading-edge vortex (LEV), and the strong effects of the shed vorticity on the loads. In an earlier work by the authors, a leading-edge suction parameter (LESP) was developed to predict intermittent LEV formation for round-leading-edge airfoils undergoing arbitrary variation in pitch and plunge at a constant freestream velocity. In this research, the LESP criterion is extended to situations where the freestream velocity is varying or zero. A discrete vortex method based on this criterion is developed and the results are compared against those from a computational fluid dynamics (CFD) method. Abstractions of perching and hovering maneuvers are used to validate the predictions in highly unsteady vortex-dominated flows, where the time-varying freestream/translational velocity is small in magnitude compared to other contributions to the velocity experienced by the airfoil. Time instants of LEV formation, flow features, and force coefficient histories for the various motion kinematics from the method and CFD are obtained and compared. The LESP criterion is seen to be successful in predicting the start of LEV formation, and the discrete vortex method is effective in modeling the flow development and forces on the airfoil.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
2.90%
发文量
38
审稿时长
>12 weeks
期刊介绍: Theoretical and Computational Fluid Dynamics provides a forum for the cross fertilization of ideas, tools and techniques across all disciplines in which fluid flow plays a role. The focus is on aspects of fluid dynamics where theory and computation are used to provide insights and data upon which solid physical understanding is revealed. We seek research papers, invited review articles, brief communications, letters and comments addressing flow phenomena of relevance to aeronautical, geophysical, environmental, material, mechanical and life sciences. Papers of a purely algorithmic, experimental or engineering application nature, and papers without significant new physical insights, are outside the scope of this journal. For computational work, authors are responsible for ensuring that any artifacts of discretization and/or implementation are sufficiently controlled such that the numerical results unambiguously support the conclusions drawn. Where appropriate, and to the extent possible, such papers should either include or reference supporting documentation in the form of verification and validation studies.
期刊最新文献
Experimentally informed, linear mean-field modelling of circular cylinder aeroacoustics Porous plates at incidence Performance investigations of the two-phase mixer for liquid metal magnetohydrodynamic generator Active learning of data-assimilation closures using graph neural networks Simple shape model for normal shock trains in straight channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1