Jin-Cheng Shu, Yan-Lan Zhang, Yong Qin, Mao-Sheng Cao
{"title":"氧化分子层沉积剪裁生态模拟纳米结构操纵电磁衰减和自供电能量转换","authors":"Jin-Cheng Shu, Yan-Lan Zhang, Yong Qin, Mao-Sheng Cao","doi":"10.1007/s40820-023-01112-7","DOIUrl":null,"url":null,"abstract":"<div><p>Advanced electromagnetic devices, as the pillars of the intelligent age, are setting off a grand transformation, redefining the structure of society to present pluralism and diversity. However, the bombardment of electromagnetic radiation on society is also increasingly serious along with the growing popularity of \"Big Data\". Herein, drawing wisdom and inspiration from nature, an eco-mimetic nanoarchitecture is constructed for the first time, highly integrating the advantages of multiple components and structures to exhibit excellent electromagnetic response. Its electromagnetic properties and internal energy conversion can be flexibly regulated by tailoring microstructure with oxidative molecular layer deposition (oMLD), providing a new cognition to frequency-selective microwave absorption. The optimal reflection loss reaches ≈ − 58 dB, and the absorption frequency can be shifted from high frequency to low frequency by increasing the number of oMLD cycles. Meanwhile, a novel electromagnetic absorption surface is designed to enable ultra-wideband absorption, covering almost the entire K and Ka bands. More importantly, an ingenious self-powered device is constructed using the eco-mimetic nanoarchitecture, which can convert electromagnetic radiation into electric energy for recycling. This work offers a new insight into electromagnetic protection and waste energy recycling, presenting a broad application prospect in radar stealth, information communication, aerospace engineering, etc.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":31.6000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-023-01112-7.pdf","citationCount":"35","resultStr":"{\"title\":\"Oxidative Molecular Layer Deposition Tailoring Eco-Mimetic Nanoarchitecture to Manipulate Electromagnetic Attenuation and Self-Powered Energy Conversion\",\"authors\":\"Jin-Cheng Shu, Yan-Lan Zhang, Yong Qin, Mao-Sheng Cao\",\"doi\":\"10.1007/s40820-023-01112-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Advanced electromagnetic devices, as the pillars of the intelligent age, are setting off a grand transformation, redefining the structure of society to present pluralism and diversity. However, the bombardment of electromagnetic radiation on society is also increasingly serious along with the growing popularity of \\\"Big Data\\\". Herein, drawing wisdom and inspiration from nature, an eco-mimetic nanoarchitecture is constructed for the first time, highly integrating the advantages of multiple components and structures to exhibit excellent electromagnetic response. Its electromagnetic properties and internal energy conversion can be flexibly regulated by tailoring microstructure with oxidative molecular layer deposition (oMLD), providing a new cognition to frequency-selective microwave absorption. The optimal reflection loss reaches ≈ − 58 dB, and the absorption frequency can be shifted from high frequency to low frequency by increasing the number of oMLD cycles. Meanwhile, a novel electromagnetic absorption surface is designed to enable ultra-wideband absorption, covering almost the entire K and Ka bands. More importantly, an ingenious self-powered device is constructed using the eco-mimetic nanoarchitecture, which can convert electromagnetic radiation into electric energy for recycling. This work offers a new insight into electromagnetic protection and waste energy recycling, presenting a broad application prospect in radar stealth, information communication, aerospace engineering, etc.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>\",\"PeriodicalId\":48779,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-023-01112-7.pdf\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-023-01112-7\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-023-01112-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Oxidative Molecular Layer Deposition Tailoring Eco-Mimetic Nanoarchitecture to Manipulate Electromagnetic Attenuation and Self-Powered Energy Conversion
Advanced electromagnetic devices, as the pillars of the intelligent age, are setting off a grand transformation, redefining the structure of society to present pluralism and diversity. However, the bombardment of electromagnetic radiation on society is also increasingly serious along with the growing popularity of "Big Data". Herein, drawing wisdom and inspiration from nature, an eco-mimetic nanoarchitecture is constructed for the first time, highly integrating the advantages of multiple components and structures to exhibit excellent electromagnetic response. Its electromagnetic properties and internal energy conversion can be flexibly regulated by tailoring microstructure with oxidative molecular layer deposition (oMLD), providing a new cognition to frequency-selective microwave absorption. The optimal reflection loss reaches ≈ − 58 dB, and the absorption frequency can be shifted from high frequency to low frequency by increasing the number of oMLD cycles. Meanwhile, a novel electromagnetic absorption surface is designed to enable ultra-wideband absorption, covering almost the entire K and Ka bands. More importantly, an ingenious self-powered device is constructed using the eco-mimetic nanoarchitecture, which can convert electromagnetic radiation into electric energy for recycling. This work offers a new insight into electromagnetic protection and waste energy recycling, presenting a broad application prospect in radar stealth, information communication, aerospace engineering, etc.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary and open-access journal that focus on science, experiments, engineering, technologies and applications of nano- or microscale structure and system in physics, chemistry, biology, material science, pharmacy and their expanding interfaces with at least one dimension ranging from a few sub-nanometers to a few hundreds of micrometers. Especially, emphasize the bottom-up approach in the length scale from nano to micro since the key for nanotechnology to reach industrial applications is to assemble, to modify, and to control nanostructure in micro scale. The aim is to provide a publishing platform crossing the boundaries, from nano to micro, and from science to technologies.