{"title":"XFVM 模拟由剪切和拉伸开口引起的断裂孔径。","authors":"Giulia Conti, Stephan Matthäi, Patrick Jenny","doi":"10.1007/s10596-023-10214-5","DOIUrl":null,"url":null,"abstract":"<p><p>In reservoir simulation, it is important to understand the mechanical behaviour of fractured rocks and the effect of shear and tensile displacements of fractures on their aperture. Tensile opening directly enhances the fracture aperture, whereas shear of a preexisting rough-walled fracture creates aperture changes dependent on the local stress state. Since fracture dilatation increases reservoir permeability, both processes must be included in a realistic and consistent manner into the mechanical reservoir simulation model. Here, we use the extended finite volume method (XFVM) to conduct flow and geomechanics simulations. In XFVM, fractures are embedded in a poroelastic matrix and are modelled with discontinuous basis functions. On each fracture segment the tractions and compressive forces are calculated, and one extra degree of freedom is added for both the shear and tensile displacement. In this particular XFVM implementation we assume that linear elasticity and steady state fluid pressure adequately constrain the effective stress. In this paper, shear dilation is not calculated a posteriori, but it enters the equations such that aperture changes directly affect the stress state. This is accomplished by adding shear dilation to the displacement gradients and therefore ascertains a consistent representation in the stress-strain relations and force balances. We illustrate and discuss the influence of this extra term in two simple test cases and in a realistic layer-restricted two-dimensional fracture network subjected to plausible in situ stress and pore pressure conditions.</p>","PeriodicalId":10662,"journal":{"name":"Computational Geosciences","volume":"1 1","pages":"227-239"},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11080645/pdf/","citationCount":"0","resultStr":"{\"title\":\"XFVM modelling of fracture aperture induced by shear and tensile opening.\",\"authors\":\"Giulia Conti, Stephan Matthäi, Patrick Jenny\",\"doi\":\"10.1007/s10596-023-10214-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In reservoir simulation, it is important to understand the mechanical behaviour of fractured rocks and the effect of shear and tensile displacements of fractures on their aperture. Tensile opening directly enhances the fracture aperture, whereas shear of a preexisting rough-walled fracture creates aperture changes dependent on the local stress state. Since fracture dilatation increases reservoir permeability, both processes must be included in a realistic and consistent manner into the mechanical reservoir simulation model. Here, we use the extended finite volume method (XFVM) to conduct flow and geomechanics simulations. In XFVM, fractures are embedded in a poroelastic matrix and are modelled with discontinuous basis functions. On each fracture segment the tractions and compressive forces are calculated, and one extra degree of freedom is added for both the shear and tensile displacement. In this particular XFVM implementation we assume that linear elasticity and steady state fluid pressure adequately constrain the effective stress. In this paper, shear dilation is not calculated a posteriori, but it enters the equations such that aperture changes directly affect the stress state. This is accomplished by adding shear dilation to the displacement gradients and therefore ascertains a consistent representation in the stress-strain relations and force balances. We illustrate and discuss the influence of this extra term in two simple test cases and in a realistic layer-restricted two-dimensional fracture network subjected to plausible in situ stress and pore pressure conditions.</p>\",\"PeriodicalId\":10662,\"journal\":{\"name\":\"Computational Geosciences\",\"volume\":\"1 1\",\"pages\":\"227-239\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11080645/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10596-023-10214-5\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10596-023-10214-5","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
XFVM modelling of fracture aperture induced by shear and tensile opening.
In reservoir simulation, it is important to understand the mechanical behaviour of fractured rocks and the effect of shear and tensile displacements of fractures on their aperture. Tensile opening directly enhances the fracture aperture, whereas shear of a preexisting rough-walled fracture creates aperture changes dependent on the local stress state. Since fracture dilatation increases reservoir permeability, both processes must be included in a realistic and consistent manner into the mechanical reservoir simulation model. Here, we use the extended finite volume method (XFVM) to conduct flow and geomechanics simulations. In XFVM, fractures are embedded in a poroelastic matrix and are modelled with discontinuous basis functions. On each fracture segment the tractions and compressive forces are calculated, and one extra degree of freedom is added for both the shear and tensile displacement. In this particular XFVM implementation we assume that linear elasticity and steady state fluid pressure adequately constrain the effective stress. In this paper, shear dilation is not calculated a posteriori, but it enters the equations such that aperture changes directly affect the stress state. This is accomplished by adding shear dilation to the displacement gradients and therefore ascertains a consistent representation in the stress-strain relations and force balances. We illustrate and discuss the influence of this extra term in two simple test cases and in a realistic layer-restricted two-dimensional fracture network subjected to plausible in situ stress and pore pressure conditions.
期刊介绍:
Computational Geosciences publishes high quality papers on mathematical modeling, simulation, numerical analysis, and other computational aspects of the geosciences. In particular the journal is focused on advanced numerical methods for the simulation of subsurface flow and transport, and associated aspects such as discretization, gridding, upscaling, optimization, data assimilation, uncertainty assessment, and high performance parallel and grid computing.
Papers treating similar topics but with applications to other fields in the geosciences, such as geomechanics, geophysics, oceanography, or meteorology, will also be considered.
The journal provides a platform for interaction and multidisciplinary collaboration among diverse scientific groups, from both academia and industry, which share an interest in developing mathematical models and efficient algorithms for solving them, such as mathematicians, engineers, chemists, physicists, and geoscientists.