{"title":"钉钉模型配分函数的零点","authors":"Giambattista Giacomin, Rafael L. Greenblatt","doi":"10.1007/s11040-022-09428-3","DOIUrl":null,"url":null,"abstract":"<div><p>We aim at understanding for which (complex) values of the potential the pinning partition function vanishes. The pinning model is a Gibbs measure based on discrete renewal processes with power law inter-arrival distributions. We obtain some results for rather general inter-arrival laws, but we achieve a substantially more complete understanding for a specific one parameter family of inter-arrivals. We show, for such a specific family, that the zeros asymptotically lie on (and densely fill) a closed curve that, unsurprisingly, touches the real axis only in one point (the critical point of the model). We also perform a sharper analysis of the zeros close to the critical point and we exploit this analysis to approach the challenging problem of Griffiths singularities for the disordered pinning model. The techniques we exploit are both probabilistic and analytical. Regarding the first, a central role is played by limit theorems for heavy tail random variables. As for the second, potential theory and singularity analysis of generating functions, along with their interplay, will be at the heart of several of our arguments.</p></div>","PeriodicalId":694,"journal":{"name":"Mathematical Physics, Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Zeros of the Partition Function of the Pinning Model\",\"authors\":\"Giambattista Giacomin, Rafael L. Greenblatt\",\"doi\":\"10.1007/s11040-022-09428-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We aim at understanding for which (complex) values of the potential the pinning partition function vanishes. The pinning model is a Gibbs measure based on discrete renewal processes with power law inter-arrival distributions. We obtain some results for rather general inter-arrival laws, but we achieve a substantially more complete understanding for a specific one parameter family of inter-arrivals. We show, for such a specific family, that the zeros asymptotically lie on (and densely fill) a closed curve that, unsurprisingly, touches the real axis only in one point (the critical point of the model). We also perform a sharper analysis of the zeros close to the critical point and we exploit this analysis to approach the challenging problem of Griffiths singularities for the disordered pinning model. The techniques we exploit are both probabilistic and analytical. Regarding the first, a central role is played by limit theorems for heavy tail random variables. As for the second, potential theory and singularity analysis of generating functions, along with their interplay, will be at the heart of several of our arguments.</p></div>\",\"PeriodicalId\":694,\"journal\":{\"name\":\"Mathematical Physics, Analysis and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Physics, Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11040-022-09428-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Physics, Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-022-09428-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The Zeros of the Partition Function of the Pinning Model
We aim at understanding for which (complex) values of the potential the pinning partition function vanishes. The pinning model is a Gibbs measure based on discrete renewal processes with power law inter-arrival distributions. We obtain some results for rather general inter-arrival laws, but we achieve a substantially more complete understanding for a specific one parameter family of inter-arrivals. We show, for such a specific family, that the zeros asymptotically lie on (and densely fill) a closed curve that, unsurprisingly, touches the real axis only in one point (the critical point of the model). We also perform a sharper analysis of the zeros close to the critical point and we exploit this analysis to approach the challenging problem of Griffiths singularities for the disordered pinning model. The techniques we exploit are both probabilistic and analytical. Regarding the first, a central role is played by limit theorems for heavy tail random variables. As for the second, potential theory and singularity analysis of generating functions, along with their interplay, will be at the heart of several of our arguments.
期刊介绍:
MPAG is a peer-reviewed journal organized in sections. Each section is editorially independent and provides a high forum for research articles in the respective areas.
The entire editorial board commits itself to combine the requirements of an accurate and fast refereeing process.
The section on Probability and Statistical Physics focuses on probabilistic models and spatial stochastic processes arising in statistical physics. Examples include: interacting particle systems, non-equilibrium statistical mechanics, integrable probability, random graphs and percolation, critical phenomena and conformal theories. Applications of probability theory and statistical physics to other areas of mathematics, such as analysis (stochastic pde''s), random geometry, combinatorial aspects are also addressed.
The section on Quantum Theory publishes research papers on developments in geometry, probability and analysis that are relevant to quantum theory. Topics that are covered in this section include: classical and algebraic quantum field theories, deformation and geometric quantisation, index theory, Lie algebras and Hopf algebras, non-commutative geometry, spectral theory for quantum systems, disordered quantum systems (Anderson localization, quantum diffusion), many-body quantum physics with applications to condensed matter theory, partial differential equations emerging from quantum theory, quantum lattice systems, topological phases of matter, equilibrium and non-equilibrium quantum statistical mechanics, multiscale analysis, rigorous renormalisation group.