{"title":"氚对环境的影响","authors":"Dan R. Quisenberry","doi":"10.1016/0013-9327(79)90051-X","DOIUrl":null,"url":null,"abstract":"<div><p>The potential radiological implications of environmental tritium releases must be determined in order to develop a programme for dealing with the tritium inventory predicted for the nuclear power industry which, though still in its infancy, produces tritium in megacurie quantities annually. Should the development of fusion power generation become a reality, it will create a potential source for large releases of tritium, much of it in the gaseous state. At present about 90% of the tritium produced enters the environment through gaseous and liquid effluents and is deposited in the hydrosphere as tritiated water. Tritium can be assimilated by plants and animals and organically bound, regardless of the exposure pathway. However, there appears to be no concentration factor relative to hydrogen at any level of food chains analysed to date. The body burden, for man, is dependent on the exposure pathway and tissue-bound fractions are primarily the result of organically bound tritium in food.</p></div>","PeriodicalId":100482,"journal":{"name":"Environmental Pollution (1970)","volume":"20 1","pages":"Pages 33-43"},"PeriodicalIF":0.0000,"publicationDate":"1979-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0013-9327(79)90051-X","citationCount":"4","resultStr":"{\"title\":\"Environmental aspects of tritium\",\"authors\":\"Dan R. Quisenberry\",\"doi\":\"10.1016/0013-9327(79)90051-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The potential radiological implications of environmental tritium releases must be determined in order to develop a programme for dealing with the tritium inventory predicted for the nuclear power industry which, though still in its infancy, produces tritium in megacurie quantities annually. Should the development of fusion power generation become a reality, it will create a potential source for large releases of tritium, much of it in the gaseous state. At present about 90% of the tritium produced enters the environment through gaseous and liquid effluents and is deposited in the hydrosphere as tritiated water. Tritium can be assimilated by plants and animals and organically bound, regardless of the exposure pathway. However, there appears to be no concentration factor relative to hydrogen at any level of food chains analysed to date. The body burden, for man, is dependent on the exposure pathway and tissue-bound fractions are primarily the result of organically bound tritium in food.</p></div>\",\"PeriodicalId\":100482,\"journal\":{\"name\":\"Environmental Pollution (1970)\",\"volume\":\"20 1\",\"pages\":\"Pages 33-43\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1979-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0013-9327(79)90051-X\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Pollution (1970)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/001393277990051X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution (1970)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/001393277990051X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The potential radiological implications of environmental tritium releases must be determined in order to develop a programme for dealing with the tritium inventory predicted for the nuclear power industry which, though still in its infancy, produces tritium in megacurie quantities annually. Should the development of fusion power generation become a reality, it will create a potential source for large releases of tritium, much of it in the gaseous state. At present about 90% of the tritium produced enters the environment through gaseous and liquid effluents and is deposited in the hydrosphere as tritiated water. Tritium can be assimilated by plants and animals and organically bound, regardless of the exposure pathway. However, there appears to be no concentration factor relative to hydrogen at any level of food chains analysed to date. The body burden, for man, is dependent on the exposure pathway and tissue-bound fractions are primarily the result of organically bound tritium in food.